精英家教网 > 高中数学 > 题目详情
在某次数学考试中,从高一年级300名男生和300名女生中,各随机抽取20名学生的成绩进行统计,作出茎叶图如图所示:
(1)根据样本统计结果,估计全年级90分以上的共有多少人?
(2)若记不低于90分者为优秀,则在抽取的样本里不低于86分的男生和女生中各选一人,求两人均为优秀的概率.
考点:古典概型及其概率计算公式,茎叶图
专题:应用题,概率与统计
分析:(1)先计算样本频率,由总数600×样本频率可求;
(2)由茎叶图知不低于86分的男生有6种,不低于86分的女生有2种,可算基本事件总数,各取1人均为优秀的有5种,然后利用古典概型的概率计算公式可求结果;
解答: 解:(1)600×
6
40
=90(人);
(2)不低于86分的男生有6种,不低于86分的女生有2种,
不低于86分的男生和女生中各选一人,共有6×2=12种.
在抽取的样本里不低于86分的男生和女生中各选一人,
两者均为优秀共5种,
故两人均为优秀的概率为P=
5
12
点评:该题考查茎叶图、古典概型及其概率计算公式,属基础题,正确理解茎叶图、古典概型的概率计算公式解题关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

假设关于某种设备的使用年限x(年)与所支出的维修费用y(万元),有如下统计资料:
X23456
y2.23.85.56.57.0
①对x、y进行线性相关性检验;
②如果x、y具有线性相关关系,求出线性回归方程;
③估计使用年限为8年,维修费用约是多少?
b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
1
-n
.
x
2
,r=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
1
-n
.
x
2
n
i=1
y
2
1
-n
.
y
2
 

(已知:
s
i=1
xi2
=90,
s
i=1
yi2
=140.8,
s
i=1
xiyi
=112.3,
79
≈8.9,
2
≈1.4)

查看答案和解析>>

科目:高中数学 来源: 题型:

某厂生产一种仪器,由于受生产能力与技术水平的限制,会产生一些次品.根据经验知道,该厂生产这种仪器,次品率p与日产量x(件)(x∈N*)之间大体满足如框图所示的关系(注:次品率P=
次品数
生产量
).又已知每生产一件合格的仪器可以盈利A(元),但每生产一件次品将亏损
A
2
(元).(其中c为小于96的常数)
(1)若c=50,当x=46 时,求次品率P;
(2)求日盈利额T(元)与日产量x(件)(x∈N*)的函数关系;
(3)当日产量为多少时,可获得最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

正项数列{an}的前n项和为Sn满足:Sn2+2nSn-22n+1=0.
(1)求数列{an}的通项公式;
(2)令bn=
2n-1
(Sn-1)(an-1)
,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*,都有Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:f(x)=
1
x2
在(0,+∞)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

方程3x2-10x+k=0(k∈R)有相异的两同号实根的充要条件是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一个学校高三年级共有学生600人,其中男生有360人,女生有240人,为了调查高三学生的复习状况,用分层抽样的方法从全体高三学生中抽取一个容量为50的样本,应抽取女生
 
人.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列叙述中,正确的有
 
(填序号)
①因为P∈α,Q∈α,所以PQ∈α;      
②因为P∈α,Q∈β,所以α∩β=PQ;
③因为AB⊆α,C∈AB,D∈AB,所以CD⊆α;
④因为AB⊆α,AB⊆β,所以A∈(α∩β)且B∈(α∩β)

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂用A,B,C三种原料生产甲、乙两种产品,现有A,B,C三种原料分别为8吨、10吨、11吨;每生产一吨甲产品需要1吨A原料、2吨B原料、1吨C原料,可获利3万元;每生产一吨乙产品需要2吨A原料、1吨B原料、3吨C原料,可获利2万元;则该工厂最大可获利
 
万元.

查看答案和解析>>

同步练习册答案