精英家教网 > 高中数学 > 题目详情
证明:f(x)=
1
x2
在(0,+∞)上是减函数.
考点:利用导数研究函数的单调性
专题:导数的概念及应用
分析:先求出函数的导数,由导数值小于0,得出函数是减函数.
解答: 证明:∵f(x)=
1
x2
,(x>0),
∴f′x)=-
2
x3
<0,
∴f(x)=
1
x2
在(0,+∞)上是减函数.
点评:本题考察了函数的单调性,导数的应用,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系.已知点A的极坐标为(2
2
π
4
),直线L的极坐标方程为ρcos(θ-
π
4
)=a,且点A在直线L上.
(1)求a的值及直线L的直角坐标方程.
(2)圆C的参数方程
x=1+cosα
y=-1+sinα
(α为参数),试判断直线L与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知an=n2+n,bn=(-1)n-1,(n∈N*),设cn=
(2n+1)bn
an
,数列{cn}的前n项和为Tn,求证:T2n<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知曲线C的参数方程为
x=2cosα
y=sinα
(α为参数).以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ-
π
4
)=2
2

(Ⅰ)求直线l的直角坐标方程;
(Ⅱ)点P为曲线C上的动点,求点P到直线l距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},a1=2,an=2an-1+2n(n≥2)
(1)求证:{
an
2n
}为等差数列;
(2)求{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在某次数学考试中,从高一年级300名男生和300名女生中,各随机抽取20名学生的成绩进行统计,作出茎叶图如图所示:
(1)根据样本统计结果,估计全年级90分以上的共有多少人?
(2)若记不低于90分者为优秀,则在抽取的样本里不低于86分的男生和女生中各选一人,求两人均为优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设(1+x+x2n=a0+a1x+a2x2+…+a2nx2n,那么a2+a4+…+a2n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,an≠0,且a1,a3,a4成等比数列,公比为q,则q=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

球O的球面上有三点A,B,C,且BC=3,∠BAC=30°,过A,B,C三点作球O的截面,球心O到截面的距离为4,则该球的体积为
 

查看答案和解析>>

同步练习册答案