精英家教网 > 高中数学 > 题目详情
19.求函数y=sin(x-$\frac{π}{4}$)在[-$\frac{3π}{4}$,$\frac{π}{4}$]上的单调递减区间.

分析 由条件利用正弦函数的减区间,求得函数y=sin(x-$\frac{π}{4}$)在[-$\frac{3π}{4}$,$\frac{π}{4}$]上的单调递减区间.

解答 解:函数y=sin(x-$\frac{π}{4}$),令2kπ+$\frac{π}{2}$≤x-$\frac{π}{4}$≤2kπ+$\frac{3π}{2}$,求得 2kπ+$\frac{3π}{4}$≤x≤2kπ+$\frac{7π}{4}$,
可得函数的减区间为[2kπ+$\frac{3π}{4}$,2kπ+$\frac{7π}{4}$],再结合x∈[-$\frac{3π}{4}$,$\frac{π}{4}$]上,
可得减区间为[-$\frac{3π}{4}$,-$\frac{π}{4}$].

点评 本题主要考查正弦函数的减区间,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知a,b,c都是正整数,且3a=4b=6c,证明:$\frac{2}{a}$+$\frac{1}{b}$=$\frac{2}{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.($\root{3}{9}$$+\sqrt{27}$)÷$\root{4}{9}$的值是$\root{6}{3}+3$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.曲线C以双曲线$\frac{{x}^{2}}{2}-\frac{{y}^{2}}{2}$=1的右焦点F为焦点,曲线C上的点到焦点F的距离与到直线x=-2的距离相等,则曲线C上的任意一点P到y轴的距离与到直线x-y+4=0的距离和的最小值为(  )
A.3$\sqrt{2}$B.3$\sqrt{2}$-1C.3$\sqrt{2}$+2D.3$\sqrt{2}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,F为椭圆的右焦点,点Q(0,-2),直线QF的斜率为$\frac{2\sqrt{3}}{3}$,O为坐标原点.
(1)求椭圆E的方程;
(2)若过点M(3,0)的直线l与椭圆E交于两点A,B,设P为椭圆上一点,且满足$\overrightarrow{OA}$+$\overrightarrow{OB}$=t$\overrightarrow{OP}$(O为坐标原点),求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数y=-x2+3x,直线l1:x=t和l2:x=t+1(其中0≤t≤2,t为常数),若直线l1,l2,x轴与函数y=f(x)的图象所围成的封闭图形的面积为S,则S的最大值为(  )
A.2B.$\frac{11}{6}$C.$\frac{13}{6}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.讨论关于x的方程ex-kx=0解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆的中心是坐标原点O,焦点F1,F2在y轴上,它的一个顶点为A($\sqrt{2}$,0),且中心O到直线AF1的距离为焦距的$\frac{1}{4}$,过点M(2,0)的直线l与椭圆交于不同的两点P,Q,点N在线段PQ上
(1)求椭圆的标准方程
(2)设|PM|•|NQ|=|PN|•|MQ|,求动点N的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设△ABC的内角A,B,C所对的边分别为a,b,c,已知a=x,b=2,B=45°,如果解三角形有且只有一个解,则x的取值范围是(0,2]∪{2$\sqrt{2}$}.

查看答案和解析>>

同步练习册答案