精英家教网 > 高中数学 > 题目详情
18.甲乙两家快递公司其“快递小哥”的日工资方案如下:甲公司规定底薪70元,每单抽成1元;乙公司规定底薪100元,每日前45单无抽成,超过45单的部分每单抽成6元
(1)设甲乙快递公司的“快递小哥”一日工资y(单位:元)与送货单数n的函数关系式为f(n),g(n),求f(n),g(n);
(2)假设同一公司的“快递小哥”一日送货单数相同,现从两家公司各随机抽取一名“快递小哥”,并记录其100天的送货单数,得到如下条形图:
若将频率视为概率,回答下列问题:
①记乙快递公司的“快递小哥”日工资为X(单位:元),求X的分布列和数学期望;
②小赵拟到两家公司中的一家应聘“快递小哥”的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.

分析 (1)甲公司规定底薪70元,每单抽成1元;乙公司规定底薪100元,每日前45单无抽成,超过45单的部分每单抽成6元,由此能求出甲乙快递公司的“快递小哥”一日工资y(单位:元)与送货单数n的函数关系式f(n),g(n).
(2)①记乙快递公司的“快递小哥”日工资为X(单位:元),由条形图得X的可能取值为100,106,118,130,分别求出相应的概率,由此能求出X的分布列.
②乙快递公司的“快递小哥”日平均送单数为45,从而乙快递公司的“快递小哥”日平均工资为115元,甲快递公司的“快递小哥”日平均工资为112元.由此推荐小赵去乙快递公式应聘.

解答 解:(1)甲快递公式的“快递小哥”一日工资y(单位:元)与送单数n的函数关系式为:y=70+n,n∈N+
∴f(n)=y=70+n,n∈N+
乙快递公式的“快递小哥”一日工资y(单位:元)与送单数n的函数关系式为:
$y=\left\{\begin{array}{l}100,(n≤45,n∈{N^+})\\ 6n-170,(n>45,n∈{N^+})\end{array}\right.$.
∴g(n)=$\left\{\begin{array}{l}100,(n≤45,n∈{N^+})\\ 6n-170,(n>45,n∈{N^+})\end{array}\right.$.
(2)①记乙快递公司的“快递小哥”日工资为X(单位:元),
由条形图得X的可能取值为100,106,118,130,
$P(X=100)=\frac{10+10}{100}=0.2,P(X=106)=\frac{30}{100}=0.3,P(X=118)=\frac{40}{100}=0.4$,
$P(X=130)=\frac{10}{100}=0.1$,
所以X的分布列为:

 X 100 106 118 130
 P 0.2 0.3 0.4 0.1
②乙快递公司的“快递小哥”日平均送单数为:
42×0.2+44×0.4+46×0.2+48×0.1+50×0.1=45,
所以乙快递公司的“快递小哥”日平均工资为70+45×1=115(元),
由①知,甲快递公司的“快递小哥”日平均工资为112元.
故推荐小赵去乙快递公式应聘.

点评 本题考查函数解析式的求法,考查离散型随机变量的概率分布列的求法及应用,考查推导论证能力、数据得理能力,考查数形结合思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知定义在R上函数f(x)是可导的,f(1)=2,且f(x)+f'(x)<1,则不等式f(x)-1<e1-x的解集是(  )(注:e为自然对数的底数)
A.(1,+∞)B.(-∞,0)∪(0,1)C.(0,1)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a≥1,f(x)=-sinxcosx+a(sinx+cosx)-1.
(1)求当a=1时,f(x)的值域;
(2)若函数f(x)在[0,π]内有且只有一个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x+$\frac{a}{x}$+b(a•b≠0)的图象在点M(-1,f(-1))处的切线方程为x+y+3=0.求:
(1)函数f(x)的解析式;
(2)函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a,b,c为正数,且满足a+2b+3c=1,则$\frac{1}{a}$+$\frac{1}{2b}$+$\frac{1}{3c}$的最小值为(  )
A.7B.8C.9D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}满足a1+$\frac{a_2}{2}+…+\frac{a_n}{n}={2^{n+1}}$(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x+y=3,x,y∈R+,若$\frac{1}{x}+\frac{m}{y}(m>0)$的最小值为3,则m等于(  )
A.2B.$2\sqrt{2}$C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知平行四边形ABCD的对角线相交于点O,点P在△COD的内部(不含边界).若$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$,则实数对(x,y)可以是(  )
A.($\frac{1}{3}$,$\frac{2}{3}$)B.($\frac{1}{4}$,-$\frac{3}{4}$)C.($\frac{3}{5}$,$\frac{1}{5}$)D.($\frac{3}{7}$,$\frac{5}{7}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若抛物线C:y2=2px(p>0)的焦点为F(1,0),则p=2;设M是抛物线C上的动点,A(4,3),则|MA|+|MF|的最小值为5.

查看答案和解析>>

同步练习册答案