精英家教网 > 高中数学 > 题目详情
7.已知平行四边形ABCD的对角线相交于点O,点P在△COD的内部(不含边界).若$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$,则实数对(x,y)可以是(  )
A.($\frac{1}{3}$,$\frac{2}{3}$)B.($\frac{1}{4}$,-$\frac{3}{4}$)C.($\frac{3}{5}$,$\frac{1}{5}$)D.($\frac{3}{7}$,$\frac{5}{7}$)

分析 结合图形,得出P点在OD上时,x+y取得最小值,P点在点C处时,x+y取得最大值.即可选取答案

解答 解:如图所示,平行四边形ABCD中,点P在△COD的内部(不含边界),
当P点在OD上时,x+y=1,是最小值;
当P点在点C处时,x+y=2,是最大值;
∴x+y的取值范围是(1,2).
故选:D.

点评 本题考查了平面向量基本定理的应用问题,也考查了数形结合的应用问题,属于中档题..

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.求下列各式的值
(1)cos74°sin14°-sin74°cos14°
(2)tan27°+tan33°+$\sqrt{3}tan{27°}tan{33°}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.甲乙两家快递公司其“快递小哥”的日工资方案如下:甲公司规定底薪70元,每单抽成1元;乙公司规定底薪100元,每日前45单无抽成,超过45单的部分每单抽成6元
(1)设甲乙快递公司的“快递小哥”一日工资y(单位:元)与送货单数n的函数关系式为f(n),g(n),求f(n),g(n);
(2)假设同一公司的“快递小哥”一日送货单数相同,现从两家公司各随机抽取一名“快递小哥”,并记录其100天的送货单数,得到如下条形图:
若将频率视为概率,回答下列问题:
①记乙快递公司的“快递小哥”日工资为X(单位:元),求X的分布列和数学期望;
②小赵拟到两家公司中的一家应聘“快递小哥”的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若a<b<0,c<d<0,则下列不等式一定成立的是(  )
A.ac>bdB.ac<bdC.$\frac{b}{a}<\frac{d}{c}$D.$\frac{b}{a}>\frac{d}{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某几何体的三视图如图所示,则该几何体的体积为(  )
A.40B.30C.20D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知随机变量ξ服从正态分布N(0,δ2),且P(ξ>2)=0.023,则P(ξ<-2)等于(  )
A.0.977B.0.023C.0.477D.0.628

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.点P(u,v)为射线l:y=kx(x≥0)与单位圆的交点,若$v=-\frac{{\sqrt{3}}}{3}$,则k=(  )
A.$-\frac{{\sqrt{6}}}{6}$B.$-\frac{{\sqrt{2}}}{3}$C.$-\sqrt{2}$D.$-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若等差数列{an}和{bn}的公差均为d(d≠0),则下列数列中不为等差数列的是(  )
A.{λan}(λ为常数)B.{an+bn}C.{an2-bn2}D.{{an•bn}}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.己知函数f(x)=ax2-2ax+b(a>0)在区间[0,3]上有最大值3和最小值-1.
(Ⅰ)求实数a,b的值;
(Ⅱ)设g(x)=$\frac{f(x)}{x}$,若不等式g(3x)-k•3x≥0在x∈[-1,0)上恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案