分析 由2an=an-1+an+1,(n∈N*,n>1),知列{an}为等差数列,依题意可求得其首项与公差,继而可求其前10项和S10.
解答 解:∵2an=an-1+an+1,(n∈N*,n>1),
∴数列{an}为等差数列,
又a2+a8=6,∴2a5=6,解得:a5=3,
又a4a6=(a5-d)(a5+d)=9-d2=8,
∴d2=1,解得:d=1或d=-1(舍去)
∴an=a5+(n-5)×1=3+(n-5)=n-2.
∴a1=-1,
∴S10=10a1+$\frac{10×9}{2}$=35.
故答案为:35.
点评 本题考查数列的求和,判断出数列{an}为等差数列,并求得an=2n-1是关键,考查理解与运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 等腰直角三角形 | B. | 直角三角形 | ||
| C. | 等腰三角形或直角三角形 | D. | 等边三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{10}$ | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{6}}}{2}$ | B. | $\frac{{\sqrt{6}}}{4}$ | C. | $\frac{{\sqrt{2}}}{4}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com