分析 (1)根据二次函数小于0的解集,设出解析式,利用单调性求得最大值,解出待定系数.
(2)将方程等价转化h(x)=0,利用h(x)的导数判断其单调性,利用单调性判断h(x)=0的根的情况.
解答 解:(1)∵f(x)是二次函数,且f(x)<0的解集是(0,5),∴可设f(x)=ax(x-5)(a>0).
∴f(x)在区间[-1,4]上的最大值是f(-1)=6a.
由已知得6a=12,∴a=2,∴f(x)=2x(x-5)=2x2-10x(x∈R).
(2)方程f(x)+$\frac{37}{x}$=0等价于方程 2x3-10x2+37=0.
设h(x)=2x3-10x2+37,则h'(x)=6x2-20x=2x(3x-10).
在区间x∈(0,$\frac{10}{3}$)时,h'(x)<0,h(x)是减函数;
在区间(-∞,0),或($\frac{10}{3}$,+∞)上,h'(x)>0,h(x)是增函数,
故h(0)是极大值,h($\frac{10}{3}$)是极小值.
∵h(3)=1>0,h($\frac{10}{3}$)=-$\frac{1}{27}$<0,h(4)=5>0,
∴方程h(x)=0在区间(3,$\frac{10}{3}$),($\frac{10}{3}$,4)内分别有惟一实数根,故函数h(x)在(3,4)内有2个零点.
而在区间(0,3),(4,+∞)内没有零点,在(-∞,0)上有唯一的零点.
画出函数h(x)的单调性和零点情况的简图,如图所示.
所以存在唯一的自然数m=3,使得方程f(x)+$\frac{37}{x}$=0在区间(m,m+1)内有且只有两个不同的实数根.![]()
点评 本小题主要考查函数的单调性、极值等基本知识,考查运用导数研究函数的性质的方法,考查函数与方程、数形结合等数学思想方法和分析问题、解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{EF}+\overrightarrow{ED}$ | B. | $\overrightarrow{EF}-\overrightarrow{DE}$ | C. | $\overrightarrow{EF}+\overrightarrow{AD}$ | D. | $\overrightarrow{EF}+\overrightarrow{AF}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20 | B. | 30 | C. | 50 | D. | 600 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{3}$ | B. | -$\frac{\sqrt{3}}{3}$ | C. | $\sqrt{3}$ | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,-7) | B. | (1,0) | C. | ($\frac{1}{2}$,$\frac{1}{2}$) | D. | ($\frac{1}{3}$,$\frac{2}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 年龄为37岁的人体内脂肪含量都为20.90% | |
| B. | 年龄为37岁的人体内脂肪含量为21.01% | |
| C. | 年龄为37岁的人群中的大部分人的体内脂肪含量为20.90% | |
| D. | 年龄为37岁的大部分的人体内脂肪含量为31.50% |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com