| 几何题 | 代数题 | 总计 | |
| 男同学 | 22 | 8 | 30 |
| 女同学 | 8 | 12 | 20 |
| 总计 | 30 | 20 | 50 |
| P(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
分析 (1)由表中数据计算K2的观测值,比较临界值得出统计结论;
(2)设甲、乙解答一道几何题的时间分别为x,y分钟,
根据几何概型计算公式求出对应面积比即可;
(3)由题意得出X的可能取值,计算对应的概率值,写出分布列与数学期望.
解答 解:(1)由表中数据得K2的观测值为
${K^2}=\frac{{50×{{(22×12-8×8)}^2}}}{30×20×30×20}=\frac{50}{9}≈5.556>5.024$,
所以根据统计有97.5%的把握认为视觉和空间能力与性别有关;
(2)设甲、乙解答一道几何题的时间分别为x,y分钟,
则基本事件满足的区域为$\left\{\begin{array}{l}5≤x≤7\\ 6≤y≤8\end{array}\right.$(如图所示);
设事件A为“乙比甲先做完此道题”,则满足的区域为x>y,
∴由几何概型计算$P(A)=\frac{{\frac{1}{2}×1×1}}{2×2}=\frac{1}{8}$,
即乙比甲先解答完的概率为$\frac{1}{8}$;
(3)由题可知,从选择做几何题的8名女生中任意抽取两人,
抽取方法有$C_8^2=28$种,
其中甲、乙两人没有一个人被抽到有$C_6^2=15$种;
恰有一人被抽到有$C_2^1•C_6^1=12$种;
两人都被抽到有$C_2^2=1$种;
∴X可能取值为$0,1,2,P(X=0)=\frac{15}{28}$,
$P(X=1)=\frac{12}{28}=\frac{3}{7}$,$P(X=2)=\frac{1}{28}$;
X的分布列为:
| X | 0 | 1 | 2 |
| P | $\frac{15}{28}$ | $\frac{12}{28}$ | $\frac{1}{28}$ |
点评 本题考查了独立性检验与几何概型的应用问题,也考查了离散型随机变量的分布列与与数学期望的计算问题,是综合题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{2+\sqrt{7}}}{3}$ | B. | $\frac{{4+\sqrt{7}}}{3}$ | C. | $\frac{{3+\sqrt{17}}}{4}$ | D. | $\frac{{5+\sqrt{17}}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | b>a>c | B. | b>c>a | C. | c>a>b | D. | a>b>c |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,4] | B. | (-2,4] | C. | [-2,4) | D. | (-2,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1-ln10•lgx}{{{x^2}•ln10}}$ | B. | $\frac{1+ln10•lnx}{{{x^2}•ln10}}$ | ||
| C. | $\frac{1+ln10•lgx}{x•ln10}$ | D. | $\frac{1-ln10•lgx}{x•ln10}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com