7£®½­½òʵÑéÖÐѧŮ×ÓÅÅÇòÈü½«ÔÚµÚÆßÖܼ´½«´òÏ죬Áõ¹óϼÀÏʦ´øÁìµÄ¸ß¶þ£¨6°à£©ºÍ×Þð¿ÄÈÀÏʦ´øÁìµÄ¸ß¶þ£¨1°à£©Á½Ö§ÅÅÇò¶Ó´òËãÔÚµÚÁùÖܽøÐÐÒ»³¡ÈÈÉíÈü£¬±ÈÈü²ÉÈ¡Îå¾ÖÈýÊ¤ÖÆ£¬Ô¼¶¨ÏÈʤ3¾ÖÕß»ñµÃ±ÈÈüµÄʤÀû£¬±ÈÈüËæ¼´½áÊø£®³ýµÚÎå¾Ö¸ß¶þ£¨6°à£©»ñʤµÄ¸ÅÂÊÊÇ $\frac{1}{2}$£¬ÆäÓàÿ¾Ö±ÈÈü¸ß¶þ£¨6°à£©»ñʤµÄ¸ÅÂʶ¼ÊÇ $\frac{2}{3}$£®Éè¸÷¾Ö±ÈÈü½á¹ûÏ໥¶ÀÁ¢£®Ôò¸ß¶þ£¨6°à£©ÒÔ3£º0»ñʤµÄ¸ÅÂÊΪ$\frac{8}{27}$£®

·ÖÎö ÀûÓÃÏ໥¶ÀÁ¢Ê¼þ¸ÅÂʳ˷¨¹«Ê½Çó½â£®

½â´ð ½â£º¡ß³ýµÚÎå¾Ö¸ß¶þ£¨6°à£©»ñʤµÄ¸ÅÂÊÊÇ$\frac{1}{2}$£¬
ÆäÓàÿ¾Ö±ÈÈü¸ß¶þ£¨6°à£©»ñʤµÄ¸ÅÂʶ¼ÊÇ$\frac{2}{3}$£¬
¸÷¾Ö±ÈÈü½á¹ûÏ໥¶ÀÁ¢£®
¡à¸ß¶þ£¨6°à£©ÒÔ3£º0»ñʤµÄ¸ÅÂÊΪp=£¨$\frac{2}{3}$£©3=$\frac{8}{27}$£®
¹Ê´ð°¸Îª£º$\frac{8}{27}$£®

µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÏ໥¶ÀÁ¢Ê¼þ¸ÅÂʳ˷¨¹«Ê½µÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®»¯¼òÇóÖµ
£¨1£©$\sqrt{{a^{\frac{1}{2}}}\sqrt{{a^{\frac{1}{2}}}\sqrt{a}}}$
£¨2£©$£¨-3{a^{\frac{1}{3}}}{b^{\frac{3}{4}}}£©•£¨\frac{1}{2}{a^{\frac{2}{3}}}{b^{\frac{1}{4}}}£©¡Â£¨-6{a^{\frac{5}{12}}}{b^{\frac{7}{12}}}£©£¨ÆäÖÐa£¾0£¬b£¾0£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êý$f£¨x£©=2sinxcos£¨¦Õ-x£©-\frac{1}{2}$£¨$0£¼¦Õ£¼\frac{¦Ð}{2}$£©µÄͼÏó¹ýµã$£¨\frac{¦Ð}{3}£¬1£©$£®
£¨¢ñ£©Çó¦ÕµÄÖµ£»        
£¨¢ò£©Çóº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Ä³°à100ÃûѧÉúÆÚÖп¼ÊÔÓïÎijɼ¨µÄƵÂÊ·Ö²¼Ö±·½Í¼ÈçͼËùʾ£¬ÆäÖгɼ¨·Ö×éÇø¼äÊÇ£º[50£¬60£©£¬[60£¬70£©£¬[70£¬80£©£¬[80£¬90£©£¬[90£¬100]£®
£¨1£©¸ù¾ÝƵÂÊ·Ö²¼Ö±·½Í¼£¬¹À¼ÆÕâ100ÃûѧÉúÓïÎijɼ¨µÄƽ¾ùÊý¡¢ÖÐλÊý¡¢ÖÚÊý£»
£¨2£©ÈôÕâ100ÃûѧÉúÓïÎijɼ¨Ä³Ð©·ÖÊý¶ÎµÄÈËÊý£¨x£©ÓëÊýѧ³É¼¨ÏàÓ¦·ÖÊý¶ÎµÄÈËÊý£¨y£©Ö®±ÈÈç±íËùʾ£¬ÇóÊýѧ³É¼¨ÔÚ[50£¬80£©Ö®ÍâµÄÈËÊý£®
·ÖÊý¶Î[50£¬60£©[60£¬70£©[70£¬80£©[80£¬90£©
x£ºy1£º12£º13£º44£º5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®´Ó¼×¡¢ÒÒ¡¢±û¡¢¶¡¡¢Îì5ÃûͬѧÖÐÈÎÑ¡4Ãû²Î¼Ó½ÓÁ¦Èü£¬ÆäÖУ¬¼×²»ÅܵÚÒ»°ô£¬ÒÒ¡¢±û²»ÅÜÏàÁÚÁ½°ô£¬Ôò²»Í¬µÄÑ¡ÅÅ×ÜÊýΪ£¨¡¡¡¡£©
A£®48B£®56C£®60D£®68

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=Asin£¨¦Øx+¦Õ£©A£¾0ÇҦأ¾0£¬0£¼¦Õ£¼$\frac{¦Ð}{2}$µÄ²¿·ÖͼÏó£¬ÈçͼËùʾ£®
£¨1£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨2£©ÒÑÖªf£¨2x0£©=-$\frac{{\sqrt{3}}}{2}$£¬x0¡Ê£¨0£¬$\frac{5¦Ð}{6}$£©£¬Çóx0µÄÖµ£»
£¨3£©Èôº¯Êýh£¨x£©=2f£¨x£©-aÔÚ[0£¬$\frac{4¦Ð}{3}$]ÉÏÓÐÁ½¸ö²»Í¬µÄÁãµã£¬ÊÔÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Éèf£¨x£©=a£¨x-5£©2+6lnx£¬ÆäÖÐa¡ÊR£¬ÇúÏßy=f£¨x£©Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏßÓë2x-y+6=0£®
£¨1£©È·¶¨aµÄÖµ£»
£¨2£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼äÓ뼫ֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=$\sqrt{3}$sin xcos x-$\frac{1}{2}$cos2x-$\frac{1}{2}$£®
£¨1£©Çóf£¨x£©µÄ×îСÕýÖÜÆÚºÍµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©µ±x¡Ê[0£¬$\frac{¦Ð}{2}$]ʱ£¬Çóº¯Êýf£¨x£©µÄ×î´óÖµºÍ×îСֵ¼°ÏàÓ¦µÄxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=2cos£¨2x+¦Õ£©£¨|¦Õ|£¼$\frac{¦Ð}{2}$£©µÄͼÏóÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»µÃµ½µÄº¯ÊýͼÏó¹ØÓÚyÖá¶Ô³Æ£¬Ôòº¯Êýf£¨x£©ÔÚ[0£¬$\frac{¦Ð}{2}$]ÉϵÄ×î´óÖµÓë×îСֵ֮ºÍΪ£¨¡¡¡¡£©
A£®$-\sqrt{3}$B£®-1C£®0D£®$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸