精英家教网 > 高中数学 > 题目详情
设函数f(x)=ex,其中e为自然对数的底数.
(1)求函数g(x)=f(x)-3x的零点个数.
(2)记曲线y=f(x)在其上一点P(x0,f(x0))(其中x0<0)处的切线为l,l与坐标轴所围成的三角形的面积为S.求S的最大值.
考点:利用导数研究曲线上某点切线方程,利用导数研究函数的单调性
专题:导数的综合应用
分析:(1)求函数g(x)=f(x)-3x的零点个数.
(2)求出函数的导数,利用导数的几何意义求出切线方程,以及切线和坐标轴的交点坐标,利用三角形的面积公式即可得到结论.
解答: 解:(1)函数g(x)=f(x)-3x=ex-3x,
则函数的导数g′(x)=ex-3,
由g′(x)=ex-3=0,解得x=ln3,
当x>ln3时,g′(x)=ex-3>0,函数单调递增,
当x<ln3时,g′(x)=ex-3<0,函数单调递减,
即当x=ln3时,函数g(x)取得极小值,无极大值,此时f(ln3)=3-3ln3<0,
即函数g(x)=f(x)-3x的零点个数为2个.
(2)∵f(x)=ex,∴f′(x)=ex
则点P(x0,f(x0))的切线方程为y-ex0=ex0(x-x0),
令x=0,解得y=ex0(1-x0),
令y=0,解得x=x0-1,
∵x0<0,∴x=x0-1<0,
则l与坐标轴所围成的三角形的面积为S=
1
2
|x0-1|ex0(1-x0)=
1
2
ex0(1-x02
则S′=
1
2
ex0(-1+x02),
∴当x0<-1时,S′>0,函数单调递增,
当-1<x0<0时,S′<0,函数单调递减,
即当x0=-1时,函数取得极大值也是最大值,
∴此时最大值为
1
2
×
1
e
×4=
2
e
点评:本题主要考查导数的几何意义,以及利用导数研究函数的最值和极值,综合性较强,运算量较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在[-4,4]上的奇函数,g(x)=f(x-2)+
1
3
.当x∈[-2,0)∪(0,2]时,g(x)=
1
2|x|-1
,g(0)=0,则方程g(x)=log 
1
2
(x+1)的解的个数为(  )
A、0B、2C、4D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=2px(p>0)的焦点F的直线l与该抛物线交于A,B两点,
AF
=3
FB
,A,B在抛物线的准线上的射影分别为D,C.若梯形ABCD的面积为8
3
,则抛物线的方程为(  )
A、y2=3
2
x
B、y2=
3
2
x
C、y2=
9
2
x
D、y2=
9
4
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
c
均为单位向量,且|
a
+
b
|=1,则(
a
-
b
)•
c
的取值范围是(  )
A、[0,1]
B、[-1,1]
C、[-
3
3
]
D、[0,
3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

解方程z2=
.
z
,其中z为复数.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,铁路线上AB段长100千米,工厂C到铁路的距离CA为20千米.现要在AB上某一点D处,向C修一条公路,已知铁路每吨千米的运费与公路每吨千米的运费之比为3:5.为了使原料从供应站B运到工厂C的运费最少,D点应选在何处?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,E为AD的中点,M是棱PC上的点,PA=PD=AD=2BC=2,CD=
3

(1)求证:PE∥平面BDM; 
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

攀枝花市欢乐阳光节是攀枝花市的一次向外界展示攀枝花的盛会,为了搞好接待工作,组委会在某大学招募了8名男志愿者和5名女志愿者(分成甲乙两组),招募时志愿者的个人综合素质测评成绩如图所示.
(Ⅰ)问男志愿者和女志愿者的平均个人综合素质测评成绩哪个更高?
(Ⅱ)现从甲乙两组个人综合素质测评为优秀(成绩在80分以上为优秀)
的志愿者中随机抽取2名志愿者负责接待外宾,要求2人中至少有一名女志
愿者的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2,0),
b
=(1,4).
(Ⅰ)求|
a
+
b
|的值;         
(Ⅱ)若向量k
a
+
b
a
+2
b
平行,求k的值.

查看答案和解析>>

同步练习册答案