【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,圆
的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求圆
的极坐标方程;
(2)已知射线
,若
与圆
交于点
(异于点
),
与直线
交于点
,求
的最大值.
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
,
.
(1)若
,求证:
,
,
必可以被分为1组或2组,使得每组所有数的和小于1;
(2)若
,求证:
,
…,
,必可以被分为
组
,使得每组所有数的和小于1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,若方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则
的取值范围为( )
A. (﹣1,+∞)B. (﹣1,1]C. (﹣∞,1)D. [﹣1,1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
、
,椭圆的离心率为
,过椭圆
的左焦点
,且斜率为
的直线
,与以右焦点
为圆心,半径为
的圆
相切.
(1)求椭圆
的标准方程;
(2)线段
是椭圆
过右焦点
的弦,且
,求
的面积的最大值以及取最大值时实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a∈R,函数f(x)=(-x2+ax)ex(x∈R).
(1)当a=2时,求函数f(x)的单调区间;
(2)若函数f(x)在(-1,1)上单调递增,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某校高二
名学生的体能情况,随机抽查部分学生,测试
分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图,根据统计图的数据,下列结论错误的是( )
![]()
A.该校高二学生
分钟仰卧起坐的次数超过
次的人数约有
人
B.该校高二学生
分钟仰卧起坐的次数少于
次的人数约有
人
C.该校高二学生
分钟仰卧起坐的次数的中位数为
次
D.该校高二学生
分钟仰卧起坐的次数的众数为
次
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com