精英家教网 > 高中数学 > 题目详情
1.已知m,n为异面直线,α,β为两个不同的平面,α∥m,α∥n,直线l满足l⊥m,l⊥n,l∥β,则(  )
A.α∥β且l∥αB.α∥β且l⊥αC.α⊥β且l∥αD.α⊥β且l⊥α

分析 由题目给出的已知条件,结合线面平行,线面垂直的判定与性质,可以直接得到正确的结论.

解答 解:由α∥m,α∥n,直线l满足l⊥m,l⊥n,可得l⊥α,
∵l∥β,
∴β⊥α,
故选:D.

点评 本题考查了平面与平面之间的位置关系,考查了平面的基本性质及推论,考查了线面平行、线面垂直的判定与性质,考查了学生的空间想象和思维能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知sin($\frac{π}{3}$-θ)=$\frac{1}{2}$,则cos($\frac{π}{6}$+θ)=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知变量x,y满足$\left\{{\begin{array}{l}{x-y+1≥0}\\{2x-y-2≤0}\\{y+1≥0}\end{array}}\right.$,若目标函数z=(1+a2)x+y的最大值为10,则实数a的值为(  )
A.±2B.±1C.±$\sqrt{3}$D.±3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四棱锥P-ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ)证明:PA⊥BD;
(Ⅱ)设PD=AD=1,若M是PB的中点,求棱锥M-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列命题正确的个数是(  )
①对于两个分类变量X与Y的随机变量K2的观测值k来说,k越小,判断“X与Y有关系”的把握程度越大;
②在相关关系中,若用y1=c1e${\;}^{{c}_{2}x}$拟合时的相关指数为R12,用y2=bx+a拟合时的相关指数为R22,且R12>R22,则y1的拟合效果好;
③利用计算机产生0~1之间的均匀随机数a,则事件“3a-1>0”发生的概率为$\frac{2}{3}$;
④“a>0,b>0”是“$\frac{a}{b}$+$\frac{b}{a}$≥2”的充分不必要条件.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.把函数f(x)=sinxcosx+$\sqrt{3}$cos2x的图象向左平移φ(φ>0)个单位,得到一个偶函数,则φ的最小值为(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某田径队有男运动员42人,女运动员30人,用分层抽样的方法从全体运动员中抽取一个容量为n的样本.若抽到的女运动员有5人,则n的值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=ln(x+$\sqrt{{x}^{2}+1}$)+3,若f(a)=10,则f(-a)=(  )
A.13B.-7C.7D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(9,12),$\overrightarrow{c}$=(4,-3),若向量$\overrightarrow{m}$=2$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{n}$=$\overrightarrow{a}$+$\overrightarrow{c}$,则向量$\overrightarrow{m}$与$\overrightarrow{n}$的夹角为$\frac{3π}{4}$.

查看答案和解析>>

同步练习册答案