精英家教网 > 高中数学 > 题目详情
4.抛掷两颗均匀的正方体骰子,所得的两个点数中一个恰是另一个的两倍的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{6}$C.$\frac{1}{8}$D.$\frac{1}{12}$

分析 列举出所有情况,看朝上的面的点数中,一个点数能被另一个点数整除的情况数占总情况的多少即可.

解答 解:可用列表法表示出同时抛掷两枚质地均匀的骰子的结果,发现共有36种可能,

(1,6) (2,6)(3,6) (4,6)(5,6)(6,6)
 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)
 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
由于没有顺序,因此发现,在这36种结果中,一个恰是另一个的两倍的情况出现,6次.
∴一个点数能被另一个点数整除的概率是$\frac{6}{36}$=$\frac{1}{6}$,
故选:B.

点评 本题考查的是对概率的理解和简单的计算;采用列举法解题的关键是找到所有存在的情况.用到的知识点为:概率=所求情况数与总情况数之比.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知数列{an}满足4an=an-1-3(n≥2)且n∈N*,且a1=-$\frac{3}{4}$,设bn+2=3log${\;}_{\frac{1}{4}}$(an+1)(n∈N*),数列{cn}满足cn=(an+1)bn
(Ⅰ)求证{an+1}是等比数列并求出数列{an}的通项公式;
(Ⅱ)求数列{cn}的前n项和Sn
(Ⅲ)对于任意n∈N*,t∈[0,1],cn≤tm2-m-$\frac{1}{2}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等差数列{an}和单调递减数列{bn}(n∈N*),{bn}通项公式为bn=λn2+a7•n.若a3,a11是方程x2-x-2=0的两根,则实数λ的取值范围是(  )
A.(-∞,-3)B.$({-∞,-\frac{1}{6}})$C.$({-\frac{1}{6},+∞})$D.(-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.y=ln(4-2x)的定义域为{x|x<2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知|$\overrightarrow{a}$|=2$\sqrt{3}$,|$\overrightarrow{b}$|=6,$\overrightarrow{a}$•$\overrightarrow{b}$=-18,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ是150°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=sin(ωx+$\frac{π}{3}$),ω>0,f($\frac{π}{6}$)=f($\frac{π}{3}$),f(x)在区间($\frac{π}{6}$,$\frac{π}{3}$)有最小值无最大值,则?的值为(  )
A.$\frac{14}{3}$B.$\frac{13}{3}$C.$\frac{3}{14}$D.$\frac{3}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,点M($\sqrt{3}$,2)为双曲线C右支上一点,且F2在以线段MF1为直径的圆的圆周上,则双曲线C的离心率为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.甲、乙比赛射击,射中的概率均为$\frac{1}{2}$,甲射击3次,记射中目标的次数为X,乙射击2次,记射中目标的次数为Y,若X>Y,则甲获胜,若X<Y,则乙获胜,分别求出甲和乙获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知实数x、y满足$\left\{\begin{array}{l}{x≥1}\\{y≥0}\\{x-y≥0}\end{array}\right.$ 则z=$\frac{y-1}{x}$的取值范围是(  )
A.[-1,0]B.[-1,1)C.(-∞,0]D.[-1,+∞)

查看答案和解析>>

同步练习册答案