精英家教网 > 高中数学 > 题目详情
如图,四边形ABCD与四边形ADMN都为正方形,AN⊥AB,F为线段BN的中点,E为线段BC上的动点.
(Ⅰ)当E为线段BC中点时,求证:NC∥平面AEF;
(Ⅱ)求证:平面AEF⊥BCMN平面;
(Ⅲ)设
BE
BC
=λ,写出λ为何值时MF⊥平面AEF(结论不要求证明).
考点:平面与平面垂直的判定,直线与平面平行的判定
专题:空间位置关系与距离
分析:(Ⅰ)由已知条件推导出NC∥EF,由此能证明NC∥平面AEF.
(Ⅱ)由已知条件推导出AD⊥平面NAB,从而得到AD⊥AF,BC⊥AF,再由AF⊥NB,推导出AF⊥平面BCMN,由此能证明平面AEF⊥平面BCMN.
(Ⅲ)利用直线与平面垂直的判定定理,结合题设条件得到λ=
1
2
时,MF⊥平面AEF.
解答: (Ⅰ)证明:∵F为线段NB的中点,E为线段BC中点
∴NC∥EF,又NC不包含平面AEF,EF?平面AEF,
∴NC∥平面AEF.(4分)
(Ⅱ)证明:四边形ABCD与四边形ADMN都为正方形,
∴AD⊥NA,AD⊥AB,
NA∩AB=A,∴AD⊥平面NAB,
AF?平面NAB,故AD⊥AF,
AD∥BC,∴BC⊥AF,
由题意NA=AB,F为线段NB的中点,
∴AF⊥NB,
NB∩BC=B,∴AF⊥平面BCMN,
∵AF?平面AEF,
∴平面AEF⊥平面BCMN.(11分)
(Ⅲ)解:λ=
1
2
时,MF⊥平面AEF.(14分)
点评:本题考查直线与平面平行的证明,考查平面与平面垂直的证明,考查满足条件的实数值的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l1:x+y-3=0与直线l2:x-3y+1=0相交于点C,以C为圆心的圆过点A(0,1).
(1)求圆C的方程;
(2)求过点B(4,5)的圆C的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的上顶点到焦点的距离为2,离心率为
3
2

(1)求a,b的值.
(2)设P是椭圆C长轴上的一个动点,过点P作斜率为k的直线l交椭圆C于A、B两点.
(ⅰ)若k=1,求△OAB面积的最大值;
(ⅱ)若PA2+PB2的值与点P的位置无关,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(3,0)作一直线l,使它被两直线l1:2x-y-2=0和l2:x+y+3=0所截的线段AB以P为中点,求此直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知∠A的终边上有一点P(x,-1),且tanA=-x,求sinA+cosA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥A-BCDE中,AE⊥平面BCDE,∠ABC=∠BCD=∠CDA=90°,AC=6
3
,BC=CD=6.
(Ⅰ)求证:BD⊥平面ACE;
(Ⅱ)设点G在棱AC上,且CG=2GA,试求三棱锥E-GCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的定义域为[0,2],分别求下列三个函数的定义域:
(1)f(x2);
(2)f(|2x-1|);
(3)f(
x
-2).

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,点(2,
π
6
)到极轴的距离
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的三视图如图所示,其中正视图与侧视图都是直角边为2的等腰直角三角形,则该几何体的表面积为
 

查看答案和解析>>

同步练习册答案