精英家教网 > 高中数学 > 题目详情
20.(1)已知t>1,x∈(0,+∞),证明:xt≥1+t(x-1);
(2)设0<a≤b<1,证明:aa+bb≥ab+ba

分析 (1)令f(x)=xt-1-t(x-1),x∈(0,1)时,xt-1≤1,f′(x)≤0,函数单调递减;x>1时,f′(x)>0,函数单调递增,得到x=1是f(x)的唯一极小值点,则f(x)≥f(1)=0,即可得证;
(2)分a=b和a≠b两种情况证明结论,并构造函数φ(x)=xa-xb,先证得φ(x)是单调减函数,进而得到结论.

解答 证明:(1)令f(x)=xt-1-t(x-1),f′(x)=t(xt-1-1),
∵t>1,∴t-1>0,
x∈(0,1)时,xt-1≤1,f′(x)≤0,函数单调递减;x>1时,f′(x)>0,函数单调递增,
∴x=1是f(x)的唯一极小值点,
∴f(x)≥f(1)=0,
即:xt≥1+t(x-1);
(2)当a=b,不等式显然成立;
当a≠b时,不妨设a<b,
则aa+bb≥ab+ba?aa-ab≥ba-bb
令φ(x)=xa-xb,x∈[a,b]
下证φ(x)是单调减函数.
∵φ′(x)=axa-1-bxb-1=axb-1(xa-b-$\frac{b}{a}$)
易知a-b∈(-1,0),1+a-b∈(0,1),$\frac{1}{1+a-b}$>1,
由(1)知当t>1,(1+x)t>1+tx,x∈[a,b],
∴${b}^{\frac{1}{1+a-b}}$=$[1+(b-1)]^{\frac{1}{1+a-b}}$>1+$\frac{b-1}{1+a-b}$=$\frac{a}{1+a-b}$>a,
∴b>a1+a-b,∴$\frac{b}{a}$>aa-b≥xa-b
∴φ'(x)<0,
∴φ(x)在[a,b]上单调递减.
∴φ(a)>φ(b),
即aa-ab>ba-bb
∴aa+bb>ab+ba
综上,aa+bb≥ab+ba成立.

点评 考查不等式的证明,考查运用导数判断函数的单调性,证明不等式的方法,构造函数是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=Asin(ωx+φ)(A>0,|φ|<$\frac{π}{2}}$)的部分图象如图,则f(${\frac{π}{3}}$)=(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.(理科)在(1-x2)(1+x)10的展开式中,x5的系数是132(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数Z=3+4i对应的向量$\overrightarrow{OZ}$的坐标是(  )
A.(3,-4)B.(3,4)C.(-3,-4)D.(-3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,正四棱柱ABCD-A1B1C1D1的底面边长为1,DD1=2,E为DD1的中点,连结C1E,CE,AC,AE,AC1,B1E.
(1)求证:B1E⊥AC;
(2)求点C1到平面AEC的距离;
(3)求二面角C1-AE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设数列{an}的前n项和为Sn,已知Sn=n2+n,
(Ⅰ)求{an}的通项公式
(Ⅱ)已知bn=$\frac{1}{{{a_n}^2-1}}$,数列{bn}的前n项和为Tn,证明:$\frac{1}{3}$≤Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知不等式组$\left\{\begin{array}{l}y≤-x+2\\ y≥kx+1\\ x≥0\end{array}\right.$所表示的平面区域为面积等于1的三角形,则实数k的值为$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,曲线C:$\left\{\begin{array}{l}{x=\sqrt{6}cosα}\\{y=\sqrt{2}sinα}\end{array}\right.$(α为参数).以原点O为极点,x轴正半轴为极轴,建立坐标系,直线l的极坐标方程为ρ(cosθ+$\sqrt{3}$sinθ)+4=0,求曲线C上的点到直线l的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图:已知⊙O是△ABC的外接圆,AB=BC,AH是BC边上的高,延长交⊙O于点D,AE是⊙O的直径.
(1)求证:AE•BH=BD•AB;
(2)过点C作⊙O的切线,交BA延长线于点F,若AF=2,CF=4,求AC的长.

查看答案和解析>>

同步练习册答案