精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=Asin(ωx+φ)(A>0,|φ|<$\frac{π}{2}}$)的部分图象如图,则f(${\frac{π}{3}}$)=(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

分析 根据三角函数的图象求出A,ω和φ的值,代入进行求解即可.

解答 解:由图象得A=2,$\frac{3}{4}$T=$\frac{5π}{6}$-($-\frac{π}{6}$)=π,则T=$\frac{4π}{3}$=$\frac{2π}{ω}$,
得ω=$\frac{3}{2}$,
则f(x)=2sin($\frac{3}{2}$x+φ),
由五点对应法得$\frac{3}{2}$×$\frac{5π}{6}$+φ=$\frac{3π}{2}$,即φ=$\frac{3π}{2}$-$\frac{5π}{4}$=$\frac{π}{4}$,
则f(x)=2sin($\frac{3}{2}$x+$\frac{π}{4}$),
则f(${\frac{π}{3}}$)=2sin($\frac{3}{2}$×${\frac{π}{3}}$+$\frac{π}{4}$)=2sin($\frac{π}{2}$+$\frac{π}{4}$)=2cos$\frac{π}{4}$=2×$\frac{\sqrt{2}}{2}$=$\sqrt{2}$,
故选:B.

点评 本题主要考查三角函数解析式的求解,根据条件求出A,ω和φ的值是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知数列{an}是等差数列,且a1+a7+a13=-π,则sina7=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知抛物线C:y2=2px(p>0)的焦点F到双曲线$\frac{x^2}{3}-{y^2}$=1的渐近线的距离为1,过焦点F且斜率为k的直线与抛物线C交于A,B两点,若$\overrightarrow{AF}=2\overrightarrow{FB}$,则k=$±2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设变量x、y满足约束条件$\left\{\begin{array}{l}{x+2y-5≤0}\\{x-y-2≤0}\\{x≥0}\end{array}\right.$,则目标函数z=4x•8y的最大值为512.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设p:x>1,q:ln2x>1,则p是q成立的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线 C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的虚轴端点到一条渐近线的距离为$\frac{b}{2}$,则双曲线C的离心率为(  )
A.3B.$\sqrt{3}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知全集U=R,集合A={x|-1≤x≤1},B={x|x2-2x≤0},则(∁UA)∩B=(  )
A.[-1,0]B.[-1,2]C.(1,2]D.(-∞,1]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=logax在定义域内单调递增,则函数g(x)=loga(3-2x-x2)的单调递增区间为(-3,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)已知t>1,x∈(0,+∞),证明:xt≥1+t(x-1);
(2)设0<a≤b<1,证明:aa+bb≥ab+ba

查看答案和解析>>

同步练习册答案