| A. | 3 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 2 |
分析 设出一个虚轴端点为B(0,b)以及双曲线的一条渐近线,根据点到直线的距离公式,建立方程关系,进行求解即可.
解答 解:设双曲线的一个虚轴端点为B(0,b),
双曲线的一条渐近线为y=$\frac{b}{a}$x,即bx-ay=0,
则点B到bx-ay=0的距离d=$\frac{|-ab|}{\sqrt{{a}^{2}+{b}^{2}}}$=$\frac{ab}{c}$=$\frac{b}{2}$,
即c=2a,
∴双曲线C的离心率为e=$\frac{c}{a}$=2,
故选:D
点评 本题主要考查双曲线C的离心率的求解,根据点到直线的距离公式建立方程关系求出a,b的关系是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | {3} | B. | {0,1} | C. | {1,2,3} | D. | {0,1,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{π+3\sqrt{3}}}{12}$ | B. | $\frac{{2π+3\sqrt{3}}}{6}$ | C. | $\frac{{2π+\sqrt{3}}}{12}$ | D. | $\frac{{2π+3\sqrt{3}}}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com