精英家教网 > 高中数学 > 题目详情
16.设集合A={x|-2≤x≤3},B={x|x≥1},则集合A∩B=[1,3].

分析 根据集合的基本运算进行求解即可.

解答 解:∵A={x|-2≤x≤3},B={x|x≥1},
∴集合A∩B={x|1≤x≤3}=[1,3],
故答案为:[1,3]

点评 本题主要考查集合的基本运算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.直线l过点P(3,-1),点A(-1,-2)到l的距离为4,此时直线l的方程为x=3或17x-8y-59=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,BC=a,AC=b,a,b是方程x2-5x+6=0的两根,且2cos(A+B)=-1.求:
(1)角C的度数;
(2)AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.化简$\sqrt{2}$$•{4}^{\frac{1}{4}}•\root{3}{{8}^{2}}•(0.125)^{\frac{1}{3}}+(0.25)^{-\frac{1}{2}}$$•({3}^{\frac{1}{3}}•{9}^{\frac{1}{3}})^{2}$=22.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若(x2+$\frac{9}{{x}^{2}}$-6)n展开式的系数和为256,则其展开式的常数项为5670.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.二次函数y=x2-2x+3的顶点坐标是(1,2);对称轴方程是x=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知角α的终边上一点是P(-4,3),则sinα=(  ),cosα=(  )
A.-$\frac{4}{5}$,$\frac{3}{5}$B.$\frac{3}{5}$,-$\frac{4}{5}$C.-$\frac{4}{3}$,$\frac{4}{5}$D.-$\frac{3}{4}$,$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数g(x)=2x-2.若命题“log2g(x)≥1“是假命题.求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等差数列{an}的前n项和为Sn,若S4=44,S7=35.
(1)求{an}的通项公式与前n项和公式;
(2)求数列{|an|}的前n项和Tn

查看答案和解析>>

同步练习册答案