【题目】在正方体
中,棱长为2,
分别为棱
的中点,
为底面正方形
内一点(含边界)且
与面
所成角的正切值为
,直线
与面
的交点为
,当
到
的距离最小时,则四面体
外接球的表面积为___________.
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),
为曲线
上一动点,动点
满足
.
(1)求
点轨迹的直角坐标方程;
(2)以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,
是
上一个动点,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l的参数方程为
(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为
,曲线C2的直角坐标方程为
.
(1)若直线l与曲线C1交于M、N两点,求线段MN的长度;
(2)若直线l与x轴,y轴分别交于A、B两点,点P在曲线C2上,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log3(ax+b)的图象经过点A(2,1)和B(5,2),an=an+b(n∈N*).
(1)求{an};
(2)设数列{an}的前n项和为Sn,bn
,求{bn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,
,
,
,
,过点
作平面
的垂线,垂足为
与
的交点
,
是线段
的中点.
![]()
(1)求证:DE//平面
;
(2)若四棱锥
的体积为
,求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场为迎接“618年中庆典,拟推出促销活动,活动规则如下:①活动期间凡在商场内购物,每满673元可参与一次现金红包抽奖,且互不影响,详细如下表:
奖项 | 一等奖 | 二等奖 |
奖金 | 200元现金红包 | 优惠餐券1张(价值50元) |
获奖率 | 30% | 70% |
②活动期间凡在商场内购物,每满2019元可参与消费返现,返现金额为实际消费金额的15%.规定每位顾客只可选择参加其中一种优惠活动.
(1)现有顾客甲在商场消费2019元,若其选择参与抽奖,求其可以获得现金红包的概率.
(2)现有100名消费金额为2019元的顾客正在等待抽奖,假如你是该商场的活动策划人,你更希望顾客参与哪项优惠活动?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对数列
,规定
为数列
的一阶差分数列,其中
,规定
为
的二阶差分数列,其中
.
(1)数列
的通项公式
,试判断
,
是否为等差数列,请说明理由?
(2)数列
是公比为
的正项等比数列,且
,对于任意的
,都存在
,使得
,求
所有可能的取值构成的集合;
(3)各项均为正数的数列
的前
项和为
,且
,对满足
,
的任意正整数
、
、
,都有
,且不等式
恒成立,求实数
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业拟对某条生产线进行技术升级,现有两种方案可供选择:方案
是报废原有生产线,重建一条新的生产线;方案
是对原有生产线进行技术改造.由于受诸多不可控因素的影响,市场销售状态可能会发生变化.该企业管理者对历年产品销售市场行情及回报率进行了调研,编制出下表:
市场销售状态 | 畅销 | 平销 | 滞销 | |
市场销售状态概率 |
|
|
| |
预期平均年利润(单位:万元) | 方案 | 700 | 400 |
|
方案 | 600 | 300 |
| |
(1)以预期平均年利润的期望值为决策依据,问:该企业应选择哪种方案?
(2)记该生产线升级后的产品(以下简称“新产品”)的年产量为
(万件),通过核算,实行方案
时新产品的年度总成本
(万元)为
,实行方案时新产品的年度总成本
(万元)为
.已知
,
.若按(1)的标准选择方案,则市场行情为畅销、平销和滞销时,新产品的单价
(元)分别为60,
,
,且生产的新产品当年都能卖出去.试问:当
取何值时,新产品年利润
的期望取得最大值?并判断这一年利润能否达到预期目标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体
中,
,
分别是棱
,
的中点,点
在对角线
上运动.当
的面积取得最小值时,点
的位置是( )
![]()
A.线段
的三等分点,且靠近点
B.线段
的中点
C.线段
的三等分点,且靠近点
D.线段
的四等分点,且靠近点![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com