分析 函数f(x)可化为t+$\frac{tsinx+x}{2{x}^{2}+cosx}$,令g(x)=$\frac{tsinx+x}{2{x}^{2}+cosx}$,则g(-x)=-g(x),设g(x)的最大值为M,最小值为N,则M+N=0,
由f(x)的最大值和最小值,解方程即可得到t=1.
解答 解:函数f(x)=$\frac{{2t{x^2}+\sqrt{2}tsin({x+\frac{π}{4}})+x}}{{2{x^2}+cosx}}$(t≠0)
=$\frac{2t{x}^{2}+\sqrt{2}t(\frac{\sqrt{2}}{2}sinx+\frac{\sqrt{2}}{2}cosx)+x}{2{x}^{2}+cosx}$=$\frac{t(2{x}^{2}+cosx)+(tsinx+x)}{2{x}^{2}+cosx}$
=t+$\frac{tsinx+x}{2{x}^{2}+cosx}$,
令g(x)=$\frac{tsinx+x}{2{x}^{2}+cosx}$,则g(-x)=$\frac{-tsinx-x}{2{x}^{2}+cosx}$=-g(x),
设g(x)的最大值为M,最小值为N,
则M+N=0,
即有t+M=a,t+N=b,
a+b=2t+M+N=2t=2,
解得t=1.
故答案为:1.
点评 本题考查函数的奇偶性及运用,考查三角函数的诱导公式和运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2014}$ | B. | $\frac{1}{{2}^{2014}}$ | C. | $\frac{1}{2015}$ | D. | $\frac{1}{{2}^{2015}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=±$\sqrt{2}$x | B. | y=±$\frac{{\sqrt{2}}}{2}$ | C. | xy=±2$\sqrt{2}$x | D. | y=±$\sqrt{11}$x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①④ | B. | ②③ | C. | ③④ | D. | ②④ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com