精英家教网 > 高中数学 > 题目详情
20.已知双曲线C 的一个焦点与抛物线y2=8$\sqrt{3}$x的焦点相同,且双曲线C过点P(-2,0),则双曲线C的渐近线方程是(  )
A.y=±$\sqrt{2}$xB.y=±$\frac{{\sqrt{2}}}{2}$C.xy=±2$\sqrt{2}$xD.y=±$\sqrt{11}$x

分析 求出抛物线的焦点坐标,得到双曲线的c,利用双曲线经过的点,求出双曲线的几何量,求解即可.

解答 解:抛物线y2=8$\sqrt{3}$x的焦点(2$\sqrt{3}$,0),
双曲线C 的一个焦点与抛物线y2=8$\sqrt{3}$x的焦点相同,c=2$\sqrt{3}$,
双曲线C过点P(-2,0),可得a=2,所以b=2$\sqrt{2}$.
双曲线C的渐近线方程是y=±$\sqrt{2}$x.
故选:A.

点评 本题考查双曲线方程的应用,抛物线的简单性质的应用,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|x-2|-|x+1|.
(Ⅰ)求f(x)的最值;
(Ⅱ)解不等式f(x)≥x2-2x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设集合A={(x,y)|(x-3)2+(y-4)2=$\frac{4}{5}$},B={(x,y)|(x-3)2+(y-4)2=$\frac{16}{5}$},C={(x,y)|2|x-3|+|y
-4|=λ},若(A∪B)∩C≠∅,则实数λ的取值范围是[$\frac{2\sqrt{5}}{5}$,4].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若关于x的函数f(x)=$\frac{{2t{x^2}+\sqrt{2}tsin({x+\frac{π}{4}})+x}}{{2{x^2}+cosx}}$(t≠0)的最大值为a,最小值为b,且a+b=2,则实数t的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立坐标系.已知曲线C的极坐标方程为ρ=acosθ.直线l的参数方程为$\left\{{\begin{array}{l}{x=\frac{{\sqrt{2}}}{2}t+2}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.(t为参数)$,曲线C与直线l一个交点的横坐标为3-$\sqrt{7}$.
(Ⅰ)求a的值及曲线C的参数方程;
(Ⅱ)求曲线C与直线l相交所成的弦的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系中,矩阵M对应的变换将平面上的任意一点P(x,y)变换为点P′(x-2y,x+y).
(Ⅰ)求矩阵M的逆矩阵M-1
(Ⅱ)求圆x2+y2=1在矩阵M对应的变换作用后得到的曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=sin(x-$\frac{π}{3}$),若x1x2>0,且f(x1)+f(x2)=0,则|x1+x2|的最小值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在极坐标系中,以C(1,π)为圆心,经过点P($\sqrt{2}$,$\frac{3π}{4}$)的圆C的极坐标方程为ρ=-2cosθ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.数列{an}满足an+1=$\left\{\begin{array}{l}{2{a}_{n},(0≤an<\frac{1}{2})}\\{2{a}_{n}-1,(\frac{1}{2}≤{a}_{n}<1)}\end{array}\right.$,若a1=$\frac{6}{7}$,则a2010=$\frac{3}{7}$.

查看答案和解析>>

同步练习册答案