| A. | 2 | B. | 2$\sqrt{2}$ | C. | 3$\sqrt{2}$ | D. | 4 |
分析 由题意,可将点D到平面BCF的距离可化为点A到平面BCF的距离,再转化为平面ABEF内点A到直线BF的距离,从而利用面积相等求解.
解答 解:∵四边形ABCD是矩形,
∴AD∥BC,
∴点D到平面BCF的距离可化为点A到平面BCF的距离,
又∵EA⊥平面ABCD,
∴平面ABEF⊥平面ABCD,
∴平面BCF⊥平面ABEF,
∴点A到平面BCF的距离可化为平面ABEF内点A到直线BF的距离,
则在平面ABEF内,BF=2$\sqrt{2}$,
∴$\frac{1}{2}$×2$\sqrt{2}$×h=$\frac{1}{2}$×4×2,
则h=2$\sqrt{2}$.
故选:B.
点评 本题考查线面、面面垂直,考查相似的转化能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | (1,3] | C. | (2,3] | D. | (1,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com