精英家教网 > 高中数学 > 题目详情
9.方程log2(9x+7)=2+log2(3x+1)的解为x=0和x=1.

分析 由对数的运算性质化对数方程为关于3x的一元二次方程,求得3x的值,进一步求得x值得答案.

解答 解:由log2(9x+7)=2+log2(3x+1),得
log2(9x+7)=log24(3x+1),
即9x+7=4(3x+1),
化为(3x2-4•3x+3=0,
解得:3x=1和3x=3,
∴x=0和x=1.
故答案为:x=0和x=1.

点评 本题考查对数方程的解法,体现了数学转化思想方法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知椭圆G:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,短半轴长为1.
(Ⅰ)求椭圆G的方程;
(Ⅱ)设椭圆G的短轴端点分别为A,B,点P是椭圆G上异于点A,B的一动点,直线PA,PB分别与直线x=4于M,N两点,以线段MN为直径作圆C.
①当点P在y轴左侧时,求圆C半径的最小值;
②问:是否存在一个圆心在x轴上的定圆与圆C相切?若存在,指出该定圆的圆心和半径,并证明你的结论;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知平面直角坐标系中两个定点E(3,2),F(-3,2),如果对于常数λ,在函数y=|x+2|+|x-2|-4,(x∈[-4,4])的图象上有且只有6个不同的点P,使得$\overrightarrow{PE}$$•\overrightarrow{PF}$=λ成立,那么λ的取值范围是(  )
A.(-5,-$\frac{9}{5}$)B.(-$\frac{9}{5}$,11)C.(-$\frac{9}{5}$,-1)D.(-5,11)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=Asin(ωx+φ)+b的图象如图,则f(x)的解析式和S=f(0)+f(1)+f(2)+…+f(2013)+f(2014)+f(2015)+f(2016)的值分别为(  )
A.f(x)=$\frac{1}{2}$sin2πx+1,S=2016B.f(x)=$\frac{1}{2}$sin2πx+1,S=2016$\frac{1}{2}$
C.f(x)=$\frac{1}{2}$sin$\frac{π}{2}$x+1,S=2017$\frac{1}{2}$D.f(x)=$\frac{1}{2}$sin$\frac{π}{2}$x+1,S=2017

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f(x)=2sin2x的图象向右平移φ(0<φ<$\frac{π}{2}$)个单位后得到函数g(x)的图象,若对满足|f(x1)-g(x2)|=4的x1、x2,有|x1-x2|的最小值为$\frac{π}{6}$,则φ=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线C1:$\frac{{x}^{2}}{4}$-y2=1,双曲线C2:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,M是双曲线C2一条渐近线上的某一点,且OM⊥MF2,若C1,C2的离心率相同,且S${\;}_{△OM{F}_{2}}$=16,则双曲线C2的实轴长为(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.数据x1,x2,…,x8平均数为6,标准差为2,则数据2x1-6,2x2-6,…,2x8-6的方差为16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若复数$\frac{4+bi}{1+i}$(b∈R)的实部与虚部互为相反数,则b=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=$\frac{sinxcosx}{1+sinx+cosx}$的最大值为$\frac{\sqrt{2}-1}{2}$.

查看答案和解析>>

同步练习册答案