精英家教网 > 高中数学 > 题目详情
18.若复数$\frac{4+bi}{1+i}$(b∈R)的实部与虚部互为相反数,则b=0.

分析 利用复数代数形式的乘除运算化简,再由实部与虚部的和为0求得b值.

解答 解:∵$\frac{4+bi}{1+i}$=$\frac{(4+bi)(1-i)}{(1+i)(1-i)}=\frac{(4+b)+(b-4)i}{2}$,
又复数$\frac{4+bi}{1+i}$的实部与虚部互为相反数,
∴4+b+b-4=0,即b=0.
故答案为:0.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若复数z满足关系$z•\overline{z}$=1,则z对应的复平面的点的轨迹是(  )
A.B.椭圆C.双曲线D.直线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.方程log2(9x+7)=2+log2(3x+1)的解为x=0和x=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=xlnx+a.
(1)若函数y=f(x)在x=e处的切线方程为y=2x,求实数a的值;
(2)设m>0,当x∈[m,2m]时,求f(x)的最小值;
(3)求证:${?_n}∈{N_+},{e^{1+\frac{1}{n}}}>{(1+\frac{1}{n})^e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数$f(x)=(m-\frac{n}{3})•{3^x}+{x^2}+2nx$,记函数y=f(x)的零点构成的集合为A,函数y=f[f(x)]的零点构成的集合为B,若A=B,则m+n的取值范围为[0,$\frac{8}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.i为虚数单位,计算$\frac{1-i}{2-i}$=$\frac{3}{5}$-$\frac{1}{5}$i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)的定义域为R,f(-1)=f(2)=1,其导数f′(x)的图象如图所示,设实数x,y满足$\left\{\begin{array}{l}{xy≥0}\\{f(2x+y)≤1}\end{array}\right.$则表达式z=3x+y的最小值为(  )
A.0B.-1C.-$\frac{3}{2}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,已知椭圆方程为$\frac{{x}^{2}}{2}$+y2=1,F是其左焦点,A、B在椭圆上,满足FA∥OB且|FA|:|OB|=3:2,则点A的横坐标为(  )
A.1B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在等差数列{an}中,a3+a4+a5+a6+a7=450.
(1)求a1+a9、a2+a8,并比较二者的大小;
(2)根据(1)的结论,写出一个可能成立的等式,并证明之.

查看答案和解析>>

同步练习册答案