19£®ÒÑÖªÍÖÔ²G£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬¶Ì°ëÖ᳤Ϊ1£®
£¨¢ñ£©ÇóÍÖÔ²GµÄ·½³Ì£»
£¨¢ò£©ÉèÍÖÔ²GµÄ¶ÌÖá¶Ëµã·Ö±ðΪA£¬B£¬µãPÊÇÍÖÔ²GÉÏÒìÓÚµãA£¬BµÄÒ»¶¯µã£¬Ö±ÏßPA£¬PB·Ö±ðÓëÖ±Ïßx=4ÓÚM£¬NÁ½µã£¬ÒÔÏß¶ÎMNΪֱ¾¶×÷Ô²C£®
¢Ùµ±µãPÔÚyÖá×ó²àʱ£¬ÇóÔ²C°ë¾¶µÄ×îСֵ£»
¢ÚÎÊ£ºÊÇ·ñ´æÔÚÒ»¸öÔ²ÐÄÔÚxÖáÉϵĶ¨Ô²ÓëÔ²CÏàÇУ¿Èô´æÔÚ£¬Ö¸³ö¸Ã¶¨Ô²µÄÔ²ÐĺͰ뾶£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÓÉÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬¶Ì°ëÖ᳤Ϊ1£¬Áгö·½³Ì×飬Çó³öa£¬b£¬ÓÉ´ËÄÜÇó³öÍÖÔ²µÄ·½³Ì£®
£¨¢ò£©¢ÙÉèP£¨x0£¬y0£©£¬A£¨0£¬1£©£¬B£¨0£¬-1£©£¬Ö±ÏßPAµÄ·½³ÌΪ£º$y-1=\frac{{{y_0}-1}}{x_0}x$£¬´Ó¶ø${y_M}=\frac{{4£¨{y_0}-1£©}}{x_0}+1$£¬Í¬Àí${y_N}=\frac{{4£¨{y_0}+1£©}}{x_0}-1$£¬½ø¶ø$|MN|=|2-\frac{8}{x_0}|$£¬ÓÉ´ËÄÜÇó³öÔ²C°ë¾¶µÄ×îСֵ£®
¢Úµ±PÔÚ×ó¶Ëµãʱ£¬Ô²CµÄ·½³ÌΪ£º£¨x-4£©2+y2=9£»µ±PÔÚÓҶ˵ãʱ£¬ÉèP£¨2£¬0£©£¬A£¨0£¬1£©£¬B£¨0£¬-1£©£¬yM=-1£¬Í¬ÀíµÃµ½yN=1£¬Ô²CµÄ·½³ÌΪ£º£¨x-4£©2+y2=1£¬ÓÉ´ËÄÜÇó³ö´æÔÚÒ»¸öÔ²ÐÄÔÚxÖáÉϵĶ¨Ô²ÓëÔ²CÏàÇУ¬¸Ã¶¨Ô²µÄÔ²ÐÄΪ£¨2£¬0£©ºÍ°ë¾¶R=1£®

½â´ð ½â£º£¨¢ñ£©ÒòΪ$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬¶Ì°ëÖ᳤Ϊ1£®
ËùÒÔ$\left\{\begin{array}{l}b=1\\ \frac{c}{a}=\frac{{\sqrt{3}}}{2}\\{a^2}={b^2}+{c^2}\end{array}\right.$£¬µÃµ½$\left\{\begin{array}{l}a=2\\ b=1\\ c=\sqrt{3}\end{array}\right.$£¬
ËùÒÔÍÖÔ²µÄ·½³ÌΪ$\frac{x^2}{4}+{y^2}=1$£®£¨3·Ö£©
£¨¢ò£©¢ÙÉèP£¨x0£¬y0£©£¬A£¨0£¬1£©£¬B£¨0£¬-1£©
ËùÒÔÖ±ÏßPAµÄ·½³ÌΪ£º$y-1=\frac{{{y_0}-1}}{x_0}x$
Áîx=4£¬µÃµ½${y_M}=\frac{{4£¨{y_0}-1£©}}{x_0}+1$£¬
ͬÀíµÃµ½${y_N}=\frac{{4£¨{y_0}+1£©}}{x_0}-1$£¬µÃµ½$|MN|=|2-\frac{8}{x_0}|$
ËùÒÔ£¬Ô²C°ë¾¶$r=|1-\frac{4}{x_0}|£¨-2¡Ü{x_0}£¼0£©$
µ±x0=-2ʱ£¬Ô²C°ë¾¶µÄ×îСֵΪ3£®£¨9·Ö£©
¢Úµ±PÔÚ×ó¶Ëµãʱ£¬Ô²CµÄ·½³ÌΪ£º£¨x-4£©2+y2=9
µ±PÔÚÓҶ˵ãʱ£¬ÉèP£¨2£¬0£©£¬A£¨0£¬1£©£¬B£¨0£¬-1£©
ËùÒÔÖ±ÏßPAµÄ·½³ÌΪ£º$y-1=\frac{-1}{2}x$
Áîx=4£¬µÃµ½yM=-1ͬÀíµÃµ½yN=1£¬
Ô²CµÄ·½³ÌΪ£º£¨x-4£©2+y2=1£¬
ÓÉÒâÖªÓ붨Բ£¨x-2£©2+y2=1ÏàÇУ¬°ë¾¶R=1
ÓÉǰһÎÊÖªÔ²CµÄ°ë¾¶$r=|1-\frac{4}{x_0}|=\left\{\begin{array}{l}1-\frac{4}{x_0}£¬-2¡Ü{x_0}£¼0\\ \frac{4}{x_0}-1£¬0£¼{x_0}¡Ü2\end{array}\right.$
ÒòΪ${y_M}=\frac{{4£¨{y_0}-1£©}}{x_0}+1$£¬${y_N}=\frac{{4£¨{y_0}+1£©}}{x_0}-1$£¬Ô²CµÄÔ²ÐÄ×ø±êΪ$£¨4£¬\frac{{4{y_0}}}{x_0}£©$
Ô²Ðľà$d=\sqrt{{{£¨4-2£©}^2}+{{£¨\frac{{4{y_0}}}{x_0}£©}^2}}$=$\sqrt{4+\frac{{16£¨1-\frac{{{x_0}^2}}{4}£©}}{{{x_0}^2}}}$=$\frac{4}{{|{x_0}|}}=\left\{\begin{array}{l}-\frac{4}{x_0}£¬-2¡Ü{x_0}£¼0\\ \frac{4}{x_0}£¬0£¼{x_0}¡Ü2\end{array}\right.$
µ±-2¡Üx0£¼0ʱ£¬$d=r-R=£¨1-\frac{4}{x_0}£©-1=-\frac{4}{x_0}$£¬´Ëʱ¶¨Ô²ÓëÔ²CÄÚÇУ»
µ±0£¼x0¡Ü2ʱ£¬$d=r+R=£¨\frac{4}{x_0}-1£©+1=\frac{4}{x_0}$£¬´Ëʱ¶¨Ô²ÓëÔ²CÍâÇУ»
´æÔÚÒ»¸öÔ²ÐÄÔÚxÖáÉϵĶ¨Ô²ÓëÔ²CÏàÇУ¬¸Ã¶¨Ô²µÄÔ²ÐÄΪ£¨2£¬0£©ºÍ°ë¾¶R=1£®£¨14·Ö£©

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÔ²µÄ°ë¾¶µÄ×îСֵµÄÇ󷨣¬¿¼²éÂú×ãÌõ¼þµÄ¶¨Ô²ÊÇ·ñ´æÔÚµÄÅжÏÓëÖ¤Ã÷£¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÖÔ²ÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨1£¬-2£©Óë$\overrightarrow{b}$=£¨3£¬4£©£¬Çó£¨$\overrightarrow{a}+\overrightarrow{b}$£©•£¨$\overrightarrow{a}-\overrightarrow{b}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×óÓÒ½¹µã·Ö±ðΪF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬¹ýF2×÷´¹Ö±ÓÚxÖáµÄÖ±Ïßl1½»ÍÖÔ²CÓÚA£¬BÁ½µã£¬ÇÒÂú×ã|AF1|=7|AF2|
£¨¢ñ£©ÇóÍÖÔ²CµÄÀëÐÄÂÊ£»
£¨¢ò£©¹ýF1×÷бÂÊΪ1µÄÖ±Ïßl2½»CÓÚM£¬NÁ½µã£®OÎª×ø±êÔ­µã£¬Èô¡÷OMNµÄÃæ»ýΪ$\frac{2\sqrt{6}}{5}$£¬ÇóÍÖÔ²CµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªA¡¢B·Ö±ðÊÇÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄ×óÓÒ¶¥µã£¬ÀëÐÄÂÊΪ$\frac{1}{2}$£¬ÓÒ½¹µãÓëÅ×ÎïÏßy2=4xµÄ½¹µãFÖØºÏ£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÒÑÖªµãPÊÇÍÖÔ²CÉÏÒìÓÚA¡¢BµÄ¶¯µã£¬Ö±Ïßl¹ýµãAÇÒ´¹Ö±ÓÚxÖᣬÈô¹ýF×÷Ö±ÏßFQ´¹Ö±ÓÚAP£¬²¢½»Ö±ÏßlÓÚµãQ£¬Ö¤Ã÷£ºQ¡¢P¡¢BÈýµã¹²Ïߣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÉèÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬É϶¥µãΪA£¬¹ýµãAÓëAF2´¹Ö±µÄÖ±Ïß½»xÖḺ°ëÖáÓÚµãQ£¬ÇÒF1ÊÇÏß¶ÎQF2µÄÖе㣬Èô¹ýA£¬Q£¬F2ÈýµãµÄԲǡºÃÓëÖ±Ïßl£ºx-$\sqrt{3}$y-3=0ÏàÇУ®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©¹ý¶¨µãM£¨0£¬2£©µÄÖ±Ïßl1ÓëÍÖÔ²C½»ÓÚG£¬HÁ½µã£¬ÇÒ|MG|£¾|MH|£®ÈôʵÊý¦ËÂú×ã$\overrightarrow{MG}=¦Ë\overrightarrow{MH}$£¬Çó¦Ë+$\frac{1}{¦Ë}$µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬ÇÒÍÖÔ²Éϵĵ㵽ÓÒ½¹µãFµÄ×î´ó¾àÀëΪ3
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Éè¹ýµãFµÄÖ±Ïßl½»ÍÖÔ²CÓÚA£¬BÁ½µã£¬¶¨µãG£¨4£¬0£©£¬Çó¡÷ABGÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÍÖÔ²C1£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{6}}}{3}$£¬½¹¾àΪ$4\sqrt{2}$£¬Å×ÎïÏßC2£ºx2=2py£¨p£¾0£©µÄ½¹µãFÊÇÍÖÔ²C1µÄ¶¥µã£®
£¨¢ñ£©ÇóC1ÓëC2µÄ±ê×¼·½³Ì£»
£¨¢ò£©C1Éϲ»Í¬ÓÚFµÄÁ½µãP£¬QÂú×ã$\overrightarrow{FP}•\overrightarrow{FQ}=0$£¬ÇÒÖ±ÏßPQÓëC2ÏàÇУ¬Çó¡÷FPQµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Èô¸´ÊýzÂú×ã¹ØÏµ$z•\overline{z}$=1£¬Ôòz¶ÔÓ¦µÄ¸´Æ½ÃæµÄµãµÄ¹ì¼£ÊÇ£¨¡¡¡¡£©
A£®Ô²B£®ÍÖÔ²C£®Ë«ÇúÏßD£®Ö±Ïß

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®·½³Ìlog2£¨9x+7£©=2+log2£¨3x+1£©µÄ½âΪx=0ºÍx=1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸