·ÖÎö £¨¢ñ£©ÓÉÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬¶Ì°ëÖ᳤Ϊ1£¬Áгö·½³Ì×飬Çó³öa£¬b£¬ÓÉ´ËÄÜÇó³öÍÖÔ²µÄ·½³Ì£®
£¨¢ò£©¢ÙÉèP£¨x0£¬y0£©£¬A£¨0£¬1£©£¬B£¨0£¬-1£©£¬Ö±ÏßPAµÄ·½³ÌΪ£º$y-1=\frac{{{y_0}-1}}{x_0}x$£¬´Ó¶ø${y_M}=\frac{{4£¨{y_0}-1£©}}{x_0}+1$£¬Í¬Àí${y_N}=\frac{{4£¨{y_0}+1£©}}{x_0}-1$£¬½ø¶ø$|MN|=|2-\frac{8}{x_0}|$£¬ÓÉ´ËÄÜÇó³öÔ²C°ë¾¶µÄ×îСֵ£®
¢Úµ±PÔÚ×ó¶Ëµãʱ£¬Ô²CµÄ·½³ÌΪ£º£¨x-4£©2+y2=9£»µ±PÔÚÓҶ˵ãʱ£¬ÉèP£¨2£¬0£©£¬A£¨0£¬1£©£¬B£¨0£¬-1£©£¬yM=-1£¬Í¬ÀíµÃµ½yN=1£¬Ô²CµÄ·½³ÌΪ£º£¨x-4£©2+y2=1£¬ÓÉ´ËÄÜÇó³ö´æÔÚÒ»¸öÔ²ÐÄÔÚxÖáÉϵĶ¨Ô²ÓëÔ²CÏàÇУ¬¸Ã¶¨Ô²µÄÔ²ÐÄΪ£¨2£¬0£©ºÍ°ë¾¶R=1£®
½â´ð ½â£º£¨¢ñ£©ÒòΪ$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬¶Ì°ëÖ᳤Ϊ1£®
ËùÒÔ$\left\{\begin{array}{l}b=1\\ \frac{c}{a}=\frac{{\sqrt{3}}}{2}\\{a^2}={b^2}+{c^2}\end{array}\right.$£¬µÃµ½$\left\{\begin{array}{l}a=2\\ b=1\\ c=\sqrt{3}\end{array}\right.$£¬
ËùÒÔÍÖÔ²µÄ·½³ÌΪ$\frac{x^2}{4}+{y^2}=1$£®£¨3·Ö£©
£¨¢ò£©¢ÙÉèP£¨x0£¬y0£©£¬A£¨0£¬1£©£¬B£¨0£¬-1£©
ËùÒÔÖ±ÏßPAµÄ·½³ÌΪ£º$y-1=\frac{{{y_0}-1}}{x_0}x$
Áîx=4£¬µÃµ½${y_M}=\frac{{4£¨{y_0}-1£©}}{x_0}+1$£¬
ͬÀíµÃµ½${y_N}=\frac{{4£¨{y_0}+1£©}}{x_0}-1$£¬µÃµ½$|MN|=|2-\frac{8}{x_0}|$
ËùÒÔ£¬Ô²C°ë¾¶$r=|1-\frac{4}{x_0}|£¨-2¡Ü{x_0}£¼0£©$
µ±x0=-2ʱ£¬Ô²C°ë¾¶µÄ×îСֵΪ3£®£¨9·Ö£©
¢Úµ±PÔÚ×ó¶Ëµãʱ£¬Ô²CµÄ·½³ÌΪ£º£¨x-4£©2+y2=9
µ±PÔÚÓҶ˵ãʱ£¬ÉèP£¨2£¬0£©£¬A£¨0£¬1£©£¬B£¨0£¬-1£©
ËùÒÔÖ±ÏßPAµÄ·½³ÌΪ£º$y-1=\frac{-1}{2}x$
Áîx=4£¬µÃµ½yM=-1ͬÀíµÃµ½yN=1£¬
Ô²CµÄ·½³ÌΪ£º£¨x-4£©2+y2=1£¬
ÓÉÒâÖªÓ붨Բ£¨x-2£©2+y2=1ÏàÇУ¬°ë¾¶R=1
ÓÉǰһÎÊÖªÔ²CµÄ°ë¾¶$r=|1-\frac{4}{x_0}|=\left\{\begin{array}{l}1-\frac{4}{x_0}£¬-2¡Ü{x_0}£¼0\\ \frac{4}{x_0}-1£¬0£¼{x_0}¡Ü2\end{array}\right.$
ÒòΪ${y_M}=\frac{{4£¨{y_0}-1£©}}{x_0}+1$£¬${y_N}=\frac{{4£¨{y_0}+1£©}}{x_0}-1$£¬Ô²CµÄÔ²ÐÄ×ø±êΪ$£¨4£¬\frac{{4{y_0}}}{x_0}£©$
Ô²Ðľà$d=\sqrt{{{£¨4-2£©}^2}+{{£¨\frac{{4{y_0}}}{x_0}£©}^2}}$=$\sqrt{4+\frac{{16£¨1-\frac{{{x_0}^2}}{4}£©}}{{{x_0}^2}}}$=$\frac{4}{{|{x_0}|}}=\left\{\begin{array}{l}-\frac{4}{x_0}£¬-2¡Ü{x_0}£¼0\\ \frac{4}{x_0}£¬0£¼{x_0}¡Ü2\end{array}\right.$
µ±-2¡Üx0£¼0ʱ£¬$d=r-R=£¨1-\frac{4}{x_0}£©-1=-\frac{4}{x_0}$£¬´Ëʱ¶¨Ô²ÓëÔ²CÄÚÇУ»
µ±0£¼x0¡Ü2ʱ£¬$d=r+R=£¨\frac{4}{x_0}-1£©+1=\frac{4}{x_0}$£¬´Ëʱ¶¨Ô²ÓëÔ²CÍâÇУ»
´æÔÚÒ»¸öÔ²ÐÄÔÚxÖáÉϵĶ¨Ô²ÓëÔ²CÏàÇУ¬¸Ã¶¨Ô²µÄÔ²ÐÄΪ£¨2£¬0£©ºÍ°ë¾¶R=1£®£¨14·Ö£©
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÔ²µÄ°ë¾¶µÄ×îСֵµÄÇ󷨣¬¿¼²éÂú×ãÌõ¼þµÄ¶¨Ô²ÊÇ·ñ´æÔÚµÄÅжÏÓëÖ¤Ã÷£¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÖÔ²ÐÔÖʵĺÏÀíÔËÓã®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | Ô² | B£® | ÍÖÔ² | C£® | Ë«ÇúÏß | D£® | Ö±Ïß |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com