精英家教网 > 高中数学 > 题目详情
3.在钝角△ABC中,角A,B,C所对的边分别为a,b,c,且满足b2+c2-a2=bc,$\overrightarrow{AB}$•$\overrightarrow{BC}$>0,a=$\frac{{\sqrt{3}}}{2}$,则b+c的取值范围是(  )
A.$(1,\frac{3}{2})$B.$(\frac{{\sqrt{3}}}{2},\frac{3}{2})$C.$(\frac{1}{2},\frac{3}{2})$D.$(\frac{1}{2},\frac{3}{2}]$

分析 根据b2+c2-a2=bc,代入到余弦定理中求得cosA的值,进而求得A,再确定b=2RsinB=sinB,c=2RsinC=sinC,结合B的范围,代入利用辅助角公式,即可得出结论.

解答 解:∵b2+c2-a2=bc,a=$\frac{{\sqrt{3}}}{2}$,由余弦定理可得cosA=$\frac{{b}^{2}{+c}^{2}{-a}^{2}}{2bc}$=$\frac{1}{2}$,
因为C是三角形内角,∴A=60°,sinA=$\frac{\sqrt{3}}{2}$.
∵$\overrightarrow{AB}•\overrightarrow{BC}$=AB•BC•cos(π-B)=-AB•BC•cosB>0,∴cosB<0,∴B为钝角,B是钝角.
由正弦定理可得b=$\frac{a}{sinA}$•sinB=sinB,同理c=sinC.
三角形ABC中,A=$\frac{π}{3}$,∴C+B=$\frac{2π}{3}$.
b+c=sinB+sinC=sinB+sin( $\frac{2π}{3}$-B)=$\frac{3}{2}$sinB+$\frac{\sqrt{3}}{2}$cosB=$\sqrt{3}$sin(B+$\frac{π}{6}$),
∵$\frac{π}{2}$<B<$\frac{2π}{3}$,∴$\frac{2π}{3}$<B+$\frac{π}{6}$<$\frac{5π}{6}$,∴sin(B+$\frac{π}{6}$)∈($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),∴$\sqrt{3}$sin(B+$\frac{π}{6}$)∈($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$),
∴b+c的取值范围为:($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$).

点评 本题主要考查了余弦定理的应用,考查三角函数的性质,考查计算能力,注意余弦定理的变形式的应用是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|2<x<4},B={x|(x+4)(x-3)>0},则A∩(∁RB)等于(  )
A.{x|2<x≤3}B.{x|3≤x<4}C.{x|2<x<4}D.{x|2≤x<4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=a(x-2)•ex-$\frac{1}{2}$x2+x.
(1)若a=1,求函数f(x)在(2,f(2))处切线方程;
(2)讨论函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列各组函数中,表示同一函数的是(  )
A.f(x)=1,g(x)=x0B.f(x)=|x|,g(x)=$\left\{\begin{array}{l}x,x≥0\\-x,x<0\end{array}\right.$
C.f(x)=x+2,g(x)=$\frac{{{x^2}-4}}{x-2}$D.f(x)=x,g(x)=($\sqrt{x}$)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{p{x}^{2}+2}{q-3x}$是奇函数,且f(2)=-$\frac{5}{3}$
(1)求函数f(x)的解析式
(2)判断函数f(x)在(0,1)上的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2-2ax+1.
(I)当a=2,x∈[-2,3]时,求函数的值域;
(II)求函数f(x)在[-1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.下列说法中,正确的是①②④.(写出所有正确选项)
①任取x>0,均有3x>2x
②函数是从其定义域到值域的映射.
③y=${(\sqrt{3})^{-x}}$是增函数.   
④y=2|x|的最小值为1.
⑤既是奇函数,又是偶函数的函数一定是f(x)=0(x∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,已知三棱柱ABC-A1B1C1中,D是BC的中点,D1是B1C1的中点,设平面A1D1B∩平面ABC=l1,平面ADC1∩平面A1B1C1=l2
(1)求证:l1∥l2
(2)若此三棱柱是各棱长都相等且侧棱垂直于底面,求A1B与AC1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.给出下列命题:
①椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1与$\frac{{x}^{2}}{9-k}$+$\frac{{y}^{2}}{25-k}$=1(0<k<9)有相等的焦距;
②“直线与双曲线相切”是“直线与双曲线只有一个公共点”的充分不必要条件;
③已知P是曲线$\left\{\begin{array}{l}{x=3cosθ}\\{y=4sinθ}\end{array}\right.$(θ为参数,0≤θ≤π)上一点,坐标原点为O,直线PO的倾斜角为$\frac{π}{4}$,则P点坐标是($\frac{3\sqrt{2}}{2}$,2$\sqrt{2}$);
④直线y=mx+1-m与椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1的位置关系随着m的变化而变化;
⑤双曲线$\frac{{x}^{2}}{{a}^{2}}$$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点为F1,F2,若双曲线上存在一点P,满足|PF1|=3|PF2|,则双曲线离心率的取值范围(1,2].
其中正确命题的所有序号有①②⑤.

查看答案和解析>>

同步练习册答案