精英家教网 > 高中数学 > 题目详情
下列命题:
①G2=ab是三个数a、G、b成等比数列的充要条件;
②若y=f(x)不恒为0,且对于?x∈R,都有f(x+2)=-f(x),则f(x)是周期函数;
③对于命题p:?x∈R,2x+3>0,则¬p:?x0∈R,2x0+3<0;
④直线l:
2
x+
2
y+1+a=0与圆C:x2+y2=a(a>0)相离.
其中不正确命题的个数为(  )
A、1B、2C、3D、4
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平行四边形ABCD中,
AD
=(2,8),
AB
=(-3,4),对角线AC与BD相交于点M,则
AM
的坐标为(  )
A、(-
1
2
,6)
B、(-
1
2
,6)
C、(
1
2
,-6)
D、(
1
2
,6)

查看答案和解析>>

科目:高中数学 来源: 题型:

一无穷等比数列{an}各项的和为
3
2
,第二项为
1
3
,则该数列的公比为(  )
A、
1
3
B、
2
3
C、-
1
3
D、
1
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数y=sin4x是最小正周期为
π
2
的周期函数,命题q:函数y=tanx在(
π
2
,π)上单调递减,则下列命题为真命题的是(  )
A、p∧q
B、(¬p)∨q
C、(¬p)∧(¬q)
D、(¬p)∨(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“?a>0,有ea≥1成立”,则¬p为(  )
A、?a≤0,有ea≤1成立B、?a≤0,有ea≥1成立C、?a>0,有ea<1成立D、?a>0,有ea≤1成立

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个结论:
①二项式(x-
1
x2
6的展开式中,常数项是-15;
②由直线x=
1
2
,x=2,曲线y=
1
x
及x轴所围成的图形的面积是2ln2;
③已知随机变量ξ服从正态分布N(1,σ2),P(ξ≤4)=0.79,则P(ξ≤-2)=0.21;
④设回归直线方程为y=2-2.5x,当变量x增加一个单位时,y平均增加2个单位. 
其中正确结论的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题是假命题的是(  )
A、?α,β∈R,使tan(α+β)=tanα+tanβ成立B、?α,β∈R,使cos(α+β)<cosα+cosβ成立C、△ABC中,“A<B”是“sinA<sinB”成立的充要条件D、?φ∈R,函数y=sin(2x+φ)都不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

“a=1”是“函数f(x)=|x-a|+b(a,b∈R)在区间[1,+∞)上为增函数”的(  )
A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)和g(x)的导函数分别为f′(x),g′(x),则下面结论正确的是(  )
①若f′(x)>g′(x),则函数f(x)的图象在函数g(x)的图象上方;
②若函数f′(x)与g′(x)的图象关于直线x=a对称,则函数f(x)与g(x)的图象关于点(a,0)对称;
③函数f(x)=f(a-x),则f′(x)=-f′(a-x);
④若f′(x)是增函数,则f(
x1+x2
2
)≤
f(x1)+f(x2)
2
A、①②B、①②③
C、③④D、②③④

查看答案和解析>>

同步练习册答案