精英家教网 > 高中数学 > 题目详情
20.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,BC⊥PB,△BCD为等边三角形,PA=BD=$\sqrt{3}$,AB=AD,E为PC的中点.
(1)求AB;
(2)求平面BDE与平面ABP所成二面角的正弦值.

分析 (1)由题意可得BC⊥平面PAB,进一步得到BC⊥AB,再由△BCD为等边三角形,且AB=AD,可得△ABC≌△ADC,由已知求解直角三角形可得AB;
(2)由(1)知,AC⊥BD,设AC∩BD=O,分别以OC、OD所在直线为x、y轴建立空间直角坐标系.求出平面BDE与平面ABP的一个法向量,再求两个法向量夹角的余弦值,可得平面BDE与平面ABP所成二面角的正弦值.

解答 解:(1)连接AC,
∵PA⊥底面ABCD,BC?平面ABCD,∴PA⊥BC,
又∵BC⊥PB,PB∩PA=P,
∴BC⊥平面PAB,又AB?平面PAB,
∴BC⊥AB.
∵△BCD为等边三角形,AB=AD,
∴△ABC≌△ADC,
∴∠ACB=30°,∠CAB=60°,
又BD=$\sqrt{3}$,∴AB=$\frac{BD}{2sin60°}=\frac{\sqrt{3}}{2×\frac{\sqrt{3}}{2}}=1$;
(2)由(1)知,AC⊥BD,设AC∩BD=O,
分别以OC、OD所在直线为x、y轴建立空间直角坐标系.
则D(0,$\frac{\sqrt{3}}{2}$,0),B(0,-$\frac{\sqrt{3}}{2}$,0),E($\frac{1}{2}$,0,$\frac{\sqrt{3}}{2}$),A($-\frac{1}{2}$,0,0),P(-$\frac{1}{2}$,0,$\sqrt{3}$).
$\overrightarrow{BE}=(\frac{1}{2},\frac{\sqrt{3}}{2},\frac{\sqrt{3}}{2})$,$\overrightarrow{BD}=(0,\sqrt{3},0)$,$\overrightarrow{BA}=(-\frac{1}{2},\frac{\sqrt{3}}{2},0)$,$\overrightarrow{BP}=(-\frac{1}{2},\frac{\sqrt{3}}{2},\sqrt{3})$.
设平面BDE的一个法向量为$\overrightarrow{m}=({x}_{1},{y}_{1},{z}_{1})$,
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BE}=0}\\{\overrightarrow{m}•\overrightarrow{BD}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{\frac{1}{2}{x}_{1}+\frac{\sqrt{3}}{2}{y}_{1}+\frac{\sqrt{3}}{2}{z}_{1}=0}\\{\sqrt{3}{y}_{1}=0}\end{array}\right.$,取${z}_{1}=\sqrt{3}$,则$\overrightarrow{m}=(-3,0,\sqrt{3})$;
设平面ABP的一个法向量为$\overrightarrow{n}=({x}_{2},{y}_{2},{z}_{2})$,
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BA}=0}\\{\overrightarrow{n}•\overrightarrow{BP}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{-\frac{1}{2}{x}_{2}+\frac{\sqrt{3}}{2}{y}_{2}=0}\\{-\frac{1}{2}{x}_{2}+\frac{\sqrt{3}}{2}{y}_{2}+\sqrt{3}{z}_{2}=0}\end{array}\right.$,取${y}_{2}=\sqrt{3}$,则$\overrightarrow{n}=(3,\sqrt{3},0)$.
∴|cos<$\overrightarrow{m},\overrightarrow{n}$>|=|$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$|=|$\frac{-9}{\sqrt{12}×\sqrt{12}}$|=$\frac{3}{4}$.
平面BDE与平面ABP所成二面角的正弦值为$\sqrt{1-(\frac{3}{4})^{2}}=\frac{\sqrt{7}}{4}$.

点评 本题考查空间中点、线、面间的距离的计算,考查空间想象能力和思维能力,训练了利用空间向量求解二面角的平面角,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设x,y∈R,向量$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(3,2-x),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数x的取值为(  )
A.1B.3C.1或-3D.3或-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.不透明的袋子内装有相同的五个小球,分别标有1-5五个编号,现有放回的随机摸取三次,则摸出的三个小球的编号乘积能被10整除的概率为(  )
A.$\frac{42}{125}$B.$\frac{18}{125}$C.$\frac{6}{25}$D.$\frac{12}{125}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)的解析式为f(x)=$\left\{\begin{array}{l}{3x+5(x≤0)}\\{x+5(0<x≤1)}\\{-2x+8(x>1)}\end{array}\right.$.
(1)画出这个函数的图象;
(2)求函数f(x)的值域;
(3)f(x)=k,有两个不相等的实数根,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设A={m-5,-5},B={2m-1,m-1},若A∩B={-5},则实数m的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.将函数y=sin(2x-$\frac{π}{6}$)-1的图象向左平移$\frac{π}{4}$个单位,再向上平移1个单位,所得图象的函数解析式为y=sin(2x+$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}满足:a3=7,a5+a7=26,前n项和为Sn
(1)求数列{an}的通项公式及前n项和Sn
(2)令${b_n}={3^n}•{a_n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.2013吉化三中高一某次考试中,一部分学生的语文成绩如表:
(Ⅰ)求出表中a、b、M,N的值,根据表中数据画出频率分布直方图;
分组频数频率
(0,20]80.08
(20,40]80.08
(40,60]300.30
(60,80]aB
(80,100]220.22
总计MN
(2)若全校参加本次考试的学生有600人,试估计这次测试中全校成绩在60分以上的人数;
(3)现用分层抽样从一、二组选6人,再从中选取2人进行分析,求被选中2人分数不超过20分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知某几何体的三视图如图所示,则该几何体的外接球体积为(  )
A.$\frac{8π}{3}$B.$\frac{8\sqrt{2}π}{3}$C.32πD.

查看答案和解析>>

同步练习册答案