精英家教网 > 高中数学 > 题目详情
15.已知x>1,y>1,求证$\sqrt{xy}$≥1+$\sqrt{(x-1)(y-1)}$.

分析 分析使不等式$\sqrt{xy}$≥1+$\sqrt{(x-1)(y-1)}$成立的充分条件,一直分析到使不等式成立的充分条件显然具备,从而不等式得证.

解答 证明:由题意,即证明$\sqrt{xy}$-1≥$\sqrt{(x-1)(y-1)}$,
两边平方得:xy-2$\sqrt{xy}$+1≥xy-(x+y)+1,
只要证明:-2$\sqrt{xy}$≥-(x+y),
只要证明:2$\sqrt{xy}$≤x+y,
利用基本不等式,显然成立,
∴$\sqrt{xy}$≥1+$\sqrt{(x-1)(y-1)}$.

点评 用分析法证明不等式,关键是寻找使不等式成立的充分条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.经过点P(2,4)且与曲线y=$\frac{1}{3}$x3+$\frac{4}{3}$相切的直线方程为(  )
A.y=x+2B.y=4x-4C.y=x+2或y=4x-4D.y=-x+2或y=-4x+4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.△ABC所在平面α外一点P,点P在平面α上的射影为O,若PA=PB=PC,则点O是△ABC的(  )
A.外心B.内心C.重心D.垂心

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知(x+$\frac{1}{x}$-2)9,展开式x3的系数为18564.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=xsinx+cosx(x>0).
(1)当x∈(0,2π)时,求f(x)的极值;
(2)记xi为f(x)的从小到大的第i(i∈N*)个极值点,证明:$\frac{1}{{{x}_{2}}^{2}}$+$\frac{1}{{{x}_{3}}^{2}}$+…+$\frac{1}{{{x}_{n}}^{2}}$<$\frac{2}{9}$(n≥2,n∈N)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.sin113°cos22°+sin203°sin158°的值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.等比数列{an}中an>0,且a5=2a4+3a3,则公比q=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在等比数列{an}中,已知对任意的正整数n,a1+a2+…+an=2n-1,求数列{an2}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,AB为圆O的直径,E是圆O上不同于A,B的动点,四边形ABCD 为矩形,且AB=2,AD=1,平面ABCD⊥平面ABE.
(1)求证:BE⊥平面DAE;
(2)当点E在$\widehat{AB}$的什么位置时,四棱锥E-ABCD的体积为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案