精英家教网 > 高中数学 > 题目详情

【题目】某单位对员工业务进行考核,从类员工(工作3年及3年以内的员工)类员工(工作3年以上的员工)的成绩中各抽取15个,具体数据如下:

类成绩:20 10 22 30 15 12 41 22 31 25 12 26 29 32 33

类成绩:21 40 30 41 42 31 49 51 52 43 47 47 32 45 48

1)根据两组数据完成两类员工成绩的茎叶图,并通过茎叶图比较两类员工成绩的平均值及分散程度(不要求计算出具体值,得出结论即可)

2)研究发现从业时间与业务能力之间具有线性相关关系,从上述抽取的名员工中抽取4名员工的成绩如下:

员工工作时间(单位年)

1

2

3

4

考核成绩

10

15

20

30

根据四个的数据,求关于的线性回归方程.

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

【答案】1B员工成绩的平均值大于A员工成绩的平均值,B员工成绩集中,A员工成绩分散;(2

【解析】

1)根据所给数据,即可求得茎叶图,根据茎叶图可估计两类员工成绩的平均值及分散程度;

2)根据所给数据求得:,求得,即可求得线性回归方程.

1)根据所给数据,可得茎叶图,如图:

根据茎叶图可得:员工成绩的平均值大于员工成绩的平均值,

员工成绩集中,员工成绩分散

2)根据所给数据可得:

可得:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,抛物线上的点到准线的最小距离为2.

1)求抛物线的方程;

2)若过点作互相垂直的两条直线与抛物线交于两点,与抛物线交于两点,分别为弦的中点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年开始,国家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)中,根据性别分层,采用分层抽样的方法从中抽取100名学生进行调查.

(1)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的100名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),如表是根据调查结果得到的列联表.请将列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;

(2)在抽取到的女生中按(1)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名女生中随机抽取4人,设这4人中选择“地理”的人数为,求的分布列及数学期望.

选择“物理”

选择“地理”

总计

男生

10

女生

25

总计

附参考公式及数据:,其中.

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两名同学参加定点投篮测试,已知两人投中的概率分别是,假设两人投篮结果相互没有影响,每人各次投球是否投中也没有影响.

(Ⅰ)若每人投球3次(必须投完),投中2次或2次以上,记为达标,求甲达标的概率;

(Ⅱ)若每人有4次投球机会,如果连续两次投中,则记为达标.达标或能断定不达标,则终止投篮.记乙本次测试投球的次数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国式过马路存在很大的交通安全隐患,某调查机构为了解路人对中国式过马路的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如图的列联表.已知在这30人中随机抽取1人抽到反感中国式过马路的路人的概率是

1)求列联表中的的值;

男性

女性

合计

反感

10

不反感

8

合计

30

2)根据列联表中的数据,判断是否有95%把握认为反感中国式过马路与性别有关?

临界值表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业采用新工艺,把企业生产中排放的二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为吨,最多为吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似地表示为,且每处理一吨二氧化碳得到可利用的化工产品价值为.

1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?

2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,是棱的中点.

(1)证明:平面

(2)若是棱的中点,求三棱锥的体积与三棱柱的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新闻出版业不断推进供给侧结构性改革,深入推动优化升级和融合发展,持续提高优质出口产品供给,实现了行业的良性发展.下面是2012年至2016年我国新闻出版业和数字出版业营收增长情况,则下列说法错误的是( )

A. 2012年至2016年我国新闻出版业和数字出版业营收均逐年增加

B. 2016年我国数字出版业营收超过2012年我国数字出版业营收的2倍

C. 2016年我国新闻出版业营收超过2012年我国新闻出版业营收的1.5倍

D. 2016年我国数字出版营收占新闻出版营收的比例未超过三分之一

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形是某生态农庄的一块植物栽培基地的平面图,现欲修一条笔直的小路(宽度不计)经过该矩形区域,其中都在矩形的边界上.已知(单位:百米),小路将矩形分成面积分别为(单位:平方百米)的两部分,其中,且点在面积为的区域内,记小路的长为百米.

1)若,求的最大值;

2)若,求的取值范围.

查看答案和解析>>

同步练习册答案