精英家教网 > 高中数学 > 题目详情
函数fM(x)的定义域为R,且定义如下:fM(x)=
1,x∈M
0,x∉M
(其中M为非空数集且M?R),若A,B是实数集R的两个非空真子集且满足A∩B≠∅,则函数F(x)=
fA∪B(x)+fA∩B(x)
fA(x)+fB(x)+1
的值域为(  )
A、{0,
1
2
}
B、{0,1}
C、{0,
2
3
,1}
D、{0,
1
2
2
3
}
考点:函数的值域
专题:计算题,新定义,函数的性质及应用,集合
分析:对F(x)中的x属于什么集合进行分类讨论,利用题中新定义的函数求出f(x)的函数值,从而得到F(x)的值域即可.
解答: 解:当x∈CR(A∪B)时,fA∪B(x)=0,fA(x)=0,
fB(x)=0,fA∩B(x)=0,
∴F(x)=
0+0
0+0+1
=0;
同理得:当x∈A∩B时,F(x)=
1+1
1+1+1
=
2
3

当x∈A但x∉A∩B时,F(x)=
1+0
1+0+1
=
1
2

当x∈B但x∉A∩B时,F(x)=
1+0
0+1+1
=
1
2

故F(x)=
0,x∈CR(A∪B)
2
3
,x∈A∩B
1
2
,x∈A但x∉A∩B
1
2
,x∈B但x∉A∩B

值域为{0,
1
2
2
3
}.
故选D.
点评:本题主要考查了函数的值域、分段函数,解答关键是对于新定义的函数fM(x)的正确理解,属于创新型题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三条直线2x-y-3=0,4x-3y-5=0和ax+y-3a+1=0相交于同一点P.
(1)求点P的坐标和a的值;
(2)求过点(-2,3)且与点P的距离为2
5
的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,则“a>2”是“a2>2a”成立的(  )
A、充分必要条件
B、必要而不充分条件
C、充分而不必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=2,an+1=
an-1
an+1
,则a2015=(  )
A、-3
B、
1
2
C、
1
3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)是定义在R上的偶函数,且f(x)在区间[0,+∞)上单调递减,则(  )
A、f(-3)<f(-2)<f(1)
B、f(1)<f(-2)<f(3)
C、f(-2)<f(1)<f(3)
D、f(3)<f(1)<f(-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,AD=2,AB=4,E、F分别为边AB、AD的中点,现将△ADE沿DE折起,得四棱锥A-BCDE.

(Ⅰ)求证:EF∥平面ABC;
(Ⅱ)若平面ADE⊥平面BCDE,求二面角A-CD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
4
-
y2
12
=1的两条渐近线与右准线围成的三角形的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈R,定义:A(x)表示不小于x的最小整数.如A(
3
)=2,A(-0.4)=0
,A(-1.1)=-1.
(理科)若A(2x•A(x))=5,则正实数x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l过点(-4,0)且与圆(x+1)2+(y-2)2=25交于A,B两点,如果|AB|=8,那么直线l的方程为(  )
A、5x-12y+20=0
B、x+4=0或5x-12y+20=0
C、5x+12y+20=0或x+4=0
D、x+4=0

查看答案和解析>>

同步练习册答案