精英家教网 > 高中数学 > 题目详情
从1,3,5,7,9五个数字中选2个,0,2,4,6,8五个数字中选2个,能组成多少个无重复数字的四位偶数?
考点:计数原理的应用
专题:排列组合
分析:根据分类计数原理,因为0是偶数且不能排在首位,所以要以选0和不选0分为两类,再按其他要求排列.
解答: 解:分类:第一类:选0,四位偶数有
C
2
5
•C
1
4
(A
3
3
+A
1
2
•A
2
2
)
=400个;
第二类:不选0,四位偶数有
C
2
5
•C
2
4
•A
1
2
•A
3
3
=720个;
所以,共能组成400+720=1120个无重复数字的四位偶数.
点评:本题主要考查了分类计数原理,分清特殊元素是分类的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图)
分 组 频率
频率
组距
[1000,1500)  
 
 
 
[1500,2000)  
 
0.0004
[2000,2500)  
 
 
 
[2500,3000)  
 
0.0005
[3000,3500)  
 
 
 
[3500,4000]  
 
0.0001
合 计  
 
 
 
(1)根据频率分布直方图完成以上表格;
(2)用组中值估计这10 000人月收入的平均值;
(3)为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[2000,3500)(元)月收入段应抽出多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系中,已知射线OA:x-y=0(x≥0),OB:2x+y=0(x≥0),过点P(1,0)作直线分别交射线OA、OB于点C、D.
(1)当△COP的面积等于△DOP面积时,求直线CD的方程;
(2)当CD的中点在直线x-2y=0上时,求直线CD的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果椭圆
x2
16
+
y2
4
=1上任意两点连线的垂直平分线与x轴相交于点P(x0,0),求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校学生会组织部分同学用“10分制”随机调查“阳光”社区人们的幸福度,现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶).
(Ⅰ)指出这组数据的众数和中位数;
(Ⅱ)若幸福度不低于9.5分,则该人的幸福度为“很幸福”,按分层抽样的方法从16人中抽取8人,并从8人中随机抽取2人,求2人中至少有1人“很幸福”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:f(x)=ax2+(b-8)x-a-ab,当x∈(-3,2)时,f(x)>0,x∈(-∞,-3)∪(2,+∞)时,
f(x)<0.
(1)求y=f(x)的解析式
(2)解x的不等式ax2+bx+c≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

青年歌手电视大赛共有10名选手参加,并请了7名评委,如图所示的茎叶图(图1)是7名评委给参加最后决赛的两位选手甲、乙评定的成绩,流程图用来编写程序统计每位选手的成绩(各评委所给有效分数的平均值),试根据所给条件回答下列问题:

(1)根据茎叶图,选手乙的成绩中,众数是多少?选手甲的成绩中,中位数是多少?
(2)在流程图(如图2所示)中,用k表示评委人数,用a表示选手的成绩(各评委所给有效分数的平均值).横线①、②处应填什么?
(3)根据流程图,甲、乙的成绩分别是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(
x
-
2
x
n展开式中第三项的系数比第二项的系数大162,求:
(1)n的值;
(2)展开式中含x3的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个袋子中有蓝色球10个,红球6个,白球若干个,这些球除颜色外其余完全相同.
(1)随机取出1球,若取到白球的概率是
1
3
,求白球的个数;
(2)从袋子中取出4个红球,分别编号为1号,2号,3号,4号,将这四个球装入一个盒子中,甲和乙从盒子中各取一个球,(甲先取,取出的球不放回),求两球的编号之和不大于5的概率.

查看答案和解析>>

同步练习册答案