分析 根据几何概型概率公式,分别求出正方形面积和阴影部分的面积,利用面积比解得.
解答 解:由题意,本题是几何概型的概率问题,
正方形的面积为1,
阴影部分的面积为
${∫}_{0}^{1}$($\sqrt{x}$-x)dx=($\frac{2}{3}$${x}^{\frac{3}{2}}$-$\frac{1}{2}$x2)${|}_{0}^{1}$=$\frac{2}{3}$-$\frac{1}{2}$=$\frac{1}{6}$,
由几何概型的概率公式得,
点落在阴影部分的概率为P=$\frac{\frac{1}{6}}{1}$=$\frac{1}{6}$.
故答案为:$\frac{1}{6}$.
点评 本题考查了几何概型的计算问题,涉及定积分在求面积中的应用,关键是正确算出阴影部分的面积,是基础题目.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com