精英家教网 > 高中数学 > 题目详情
20.已知函数$f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<\frac{π}{2},x∈R)$的图象的一部分如图所示.
(1)求函数f(x)的解析式;
(2)求函数y=f(x)+f(x+2)在[-3,1]上的增区间及值域.

分析 (1)由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,从而得到函数的解析式.
(2)利用两角和差的正弦公式化简函数y=f(x)+f(x+2)的解析式为 2$\sqrt{2}$cos$\frac{π}{4}$x,由此求得函数的在[-3,1]上的增区间及值域.

解答 解:(1)由图象,知A=2,$\frac{2π}{ω}$=8,
∴ω=$\frac{π}{4}$,可得f(x)=2sin($\frac{π}{4}$x+φ),
当x=1时,有$\frac{π}{4}$×1+φ=$\frac{π}{2}$,
∴φ=$\frac{π}{4}$,
∴f(x)=2sin($\frac{π}{4}$x+$\frac{π}{4}$).
(2)y=2sin($\frac{π}{4}$x+$\frac{π}{4}$)+2sin[$\frac{π}{4}$(x+2)+$\frac{π}{4}$]
=2sin($\frac{π}{4}$x+$\frac{π}{4}$)+2cos($\frac{π}{4}$x+$\frac{π}{4}$)
=2$\sqrt{2}$sin($\frac{π}{4}$x+$\frac{π}{2}$)
=2$\sqrt{2}$cos$\frac{π}{4}$x,
∴函数在[-3,0]递增,
x=0时,y最大,最大值是2$\sqrt{2}$,
x=-3时,y最小,最小值是-2,
故函数的值域是[-2,2$\sqrt{2}$].

点评 本题主要考查利用y=Asin(ωx+φ)的图象特征,由函数y=Asin(ωx+φ)的部分图象求解析式,两角和差的正弦公式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知点P在曲线C:y2=4-2x2上,点$A({0,-\sqrt{2}})$,则|PA|的最小值为(  )
A.$2-\sqrt{2}$B.$2+\sqrt{2}$C.$2\sqrt{2}$D.$\sqrt{2}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.给出下面四个命题(其中m,n,l是空间中不同的直线,α,β是空间中不同的平面)中错误的命题个数为(  )
①m∥n,n∥α⇒m∥α
②α⊥β,α∩β=m,l⊥m⇒l⊥β
③l⊥m,l⊥n,m?α,n?α⇒l⊥α
④m∩n=A,m∥α,m∥β,n∥α,n∥β⇒α∥β
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和为Sn=2n2-3n-10.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{|an|}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.二项式${({\frac{a}{x}+3})^n}$的展开式的系数和为256,则a的值为-1或-5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.曲线$y=\frac{sinx}{x}$在点M(-π,0)处的切线方程为x-πy+π=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知圆的方程为x2+y2-4x-2y+4=0,则该圆关于直线y=x对称圆的方程为(  )
A.x2+y2-2x-2y+1=0B.x2+y2-4x-4y+7=0C.x2+y2+4x-2y+4=0D.x2+y2-2x-4y+4=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题p:?x∈I,x3-x2+1≤0,则¬p是(  )
A.?x∈I,x3-x2+1>0B.?x∉I,x3-x2+1>0C.?x∈I,x3-x2+1>0D.?x∉I,x3-x2+1>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在等差数列{an}中,a3+a7=38,则a2+a4+a6+a8=76.

查看答案和解析>>

同步练习册答案