精英家教网 > 高中数学 > 题目详情
设A(xA,yA),B(xB,yB)为平面直角坐标系的两点,其中xA,yA,xB,yB∈Z,令△x=xB-xA,△y=yB-yA,若|△x|+|△y|=3,且△x•△y≠0,则称点B为A的“相关点”,记作:B=△τ(A),已知P0(x0,y0)(x0,y0∈Z)为平面上一个定点,平面上点列{Pi}满足:Pi=τ(Pi-1),且点Pi的坐标为(xi,yi),其中i=1,2,3,…,n.
(1)点P0的“相关点有
 
个;
(2)若P0(1,0),且y10=12,记T=x0+x1+x2+…+x10,则T的最大值为
 
考点:进行简单的合情推理
专题:推理和证明
分析:(1)根据绝对值的意义,可得整数△x与△y在{±1,±2}中取值,满足绝对值的和等于3,由此可得点P0的相关点有8个;
(2)令△xi=xi-xi-1,△yi=yi-yi-1(i=1,2,3,…,10),依题意可得(y10-y9)+(y9-y8)+…+(y2-y1)+(y1-y0)=12.由|△xi|+|△yi|=3且|△xi|的|△yi|都是非零整数,可得当△xi=2的个数越多,且在△x1,△x2,△x3,…,△xn-1,△xn这个序列中,数字2的位置越靠前,应的T值越大,从而得到当△yi取值为1或-1的次数最多时,相应地△xi取2的次数最多,可使T的值最大.进而得到本题答案.
解答: 解:(1)∵|△x|+|△y|=3,(|△x|•|△y|≠0)
∴|△x|=1且|△y|=2,或|△x|=2且|△y|=1,
∴点P0的相关点有8个.
(2)令△xi=xi-xi-1,△yi=yi-yi-1,(i=1,2,3,…,n)
依题意(y10-y9)+(y9-y8)+…+(y2-y1)+(y1-y0)=12,
∵T=x0+x1+x2+…+x10=1+(1+△x1)+(1+△x1+△x2)+…+(1+△x1+△x2+…+△x10
=11+10△x1+9△x2+…+2△x9+△x10)…(10分)
∵|△xi|+|△yi|=3,且|△xi|的|△yi|都是非零整数,
∴当△xi=2的个数越多,则T的值越大,
∵在△x1,△x2,△x3,…,△x9,△x10这个序列中,数字2的位置越靠前,相应的值越大
且当△yi取值为1或-1的次数最多时,△xi取2的次数才能最多,T的值才能最大.
由(y10-y9)+(y9-y8)+…+(y2-y1)+(y1-y0)=12,
可得:所有的△yi中至有8个1,此时△xi都取2,
而其它的△yi都即2,此时△xi都取1,
得T=11+2(1+2+…+8)+9+10=121.
故答案为:8,102
点评:本题给出平面坐标系内“相关点”的定义,讨论了T的最大值问题.着重考查了绝对值的意义、等差数列的求和公式、方程的整数解和圆的标准方程等知识,属于难题.请同学们注意答过程中逐项作差再累加求和、分类讨论思想和转化化归方法的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,正三棱柱ABC-A1B1C1中,各棱长均为4,M、N分别是BC、CC1的中点.
(1)证明:MN⊥平面AMB;
(2)求三棱锥B1-ABC的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(sinx+cosx)2+
3
(2cos2x-1),x∈R.
(Ⅰ)若对任意x恒有f(-
π
6
)≤f(ωx+φ)≤f(
π
3
),(ω>0,|φ|<
π
2
),求ω的最小值和对应的φ的值.
(Ⅱ)若△ABC的角A、B、C所对的边分别是a,b,c,且f(
A
2
)=1,又b,a,4c成等比数列,求
sinB
sinC
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-1,g(x)=-x2+4x-3,若有f(a)=g(b),则a的取值范围为(  )
A、[2-
2
,2+
2
]
B、(-∞,ln2]
C、(2-
2
,2+
2
D、(ln2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若“1≤x≤2”是“0≤x≤m”的充分不必要条件,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知,全集U={x|-1≤x≤8},A={x|-1≤x≤1},B={x|3≤x≤5},求∁UA和(∁UA)∩(∁UB)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正实数x,y满x2+y2+z2=1,则S=
1
2xyz2
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x+c(x≥0)
x-1(x<0)
是增函数,则实数c的取值范围是(  )
A、[-1,+∞)
B、(-1,+∞)
C、(-∞,-1)
D、(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:

给出30个数:1,2,4,7,11…,其中第i+1个数是在第i个数的基础上增加i(i=1,2,3…),如图的框图是求这30个数的和,则判断框①与执行框②应分别填入(  )
A、i≤30?,p=p+i-1
B、i≤29?,p=p+i+1
C、i≤31?,p=p+i
D、i≤30?,p=p+i

查看答案和解析>>

同步练习册答案