精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=x3-2x2+x.
(1)求函数f(x)单调区间.
(2)求f(x)在区间[$\frac{1}{3},2$]上的最值.

分析 (1)求出函数的导数,解关于导函数的不等式,从而求出函数的单调区间即可;(2)根据函数的单调性,求出函数的极值和端点值,从而求出函数在闭区间上的最值即可.

解答 解:(1)∵f(x)=x3-2x2+x,
∴f′(x)=3x2-4x+1=(3x-1)(x-1),
令f′(x)>0,解得:x>1或x<$\frac{1}{3}$,
令f′(x)<0,解得:$\frac{1}{3}$<x<1,
∴f(x)在(-∞,$\frac{1}{3}$)递增,在($\frac{1}{3}$,1)递减,在(1,+∞)递增;
(2)由(1)得:f(x)在[$\frac{1}{3}$,1)递减,在(1,2]递增;
而f(1)=0,f($\frac{1}{3}$)=$\frac{4}{27}$,f(2)=2,
∴f(x)的最大值为f(2)=2,f(x)的最小值为f(1)=0.

点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.某篮球运动员投篮投中的概率为$\frac{2}{3}$,则该运动员“投篮3次恰好投中2次”的概率是$\frac{4}{9}$(结果用分数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知$\underset{lim}{n→∞}$$\frac{a{n}^{2}+bn-100}{3n-1}$=2,则a、b的值分别为0、6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在区间[-1,1]上任取两个数a,b,在下列条件时,分别求不等式x2+2ax+b2≥0恒成立时的概率:
(1)当a,b均为整数时;
(2)当a,b均为实数时.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.由所有小于13的既是奇数又是素数的自然数组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=$\frac{a}{x}$+xlnx,g(x)=x3-x2-3.其中a∈R.
(1)当a=2时,求曲线y=f(x)在点P(1,f(1))处的切线方程;
(2)若存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求整数M的最大值;
(3)若对任意的s,t∈[$\frac{1}{2}$,2]都有f(s)≥g(t)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2+x-lnx.
(1)求曲线y=f(x)在点(1,f(1))处切线方程;  
(2)求函数f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知四棱锥P-ABCD的底面ABCD为菱形,且∠ABC=60°,
AB=PC=2,PA=PB=$\sqrt{2}$.
(Ⅰ)求证:平面PAB⊥平面ABCD;
(Ⅱ)设H是PB上的动点,求CH与平面PAB所成最大角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.sinα-sinβ=$\frac{1}{2}$,cosα-cosβ=$\frac{1}{3}$,则cos(α-β)=$\frac{59}{72}$.

查看答案和解析>>

同步练习册答案