精英家教网 > 高中数学 > 题目详情
解关于x的不等式
(1)
3x-5
x2+2x-3
≤2;                  
(2)x2-ax-2a2<0.
考点:其他不等式的解法
专题:不等式的解法及应用
分析:(1)不等式即
(2x-1)(x+1)
(x+3)(x-1)
≥0,再用穿根法求得它的解集.
(2)不等式即 (x+a)(x-2a)<0,分当a=0时、当a>0时、当a<0时三种情况,分别求得不等式的解集.
解答: 解:(1)不等式
3x-5
x2+2x-3
≤2,即
2x2+x-1
x2+2x-3
≥0,
(2x-1)(x+1)
(x+3)(x-1)
≥0,
用穿根法求得它的解集为 {x|x<-3,或-1≤x≤
1
2
,或x>1}.
(2)x2-ax-2a2<0,即 (x+a)(x-2a)<0,
当a=0时,不等式的解集为∅;
当a>0时,不等式的解集为{x|-a<x<2a};
当a<0时,不等式的解集为{x|2a<x<-a}.
点评:本题主要考查分式不等式、一元二次不等式的解法,体现了等价转化和分类讨论的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设Q是曲线T:xy=1(x>0)上任意一点,l是曲线T在点Q处的切线,且l交坐标轴于A,B两点,则△OAB的面积(O为坐标原点)(  )
A、为定值2
B、最小值为3
C、最大值为4
D、与点Q的位置有关

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A、B、C所对边的长分别为a、b、c,且a2-c2=3b,sinAcosC=4cosAsinC,则b=(  )
A、2
B、
5
C、2
5
D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

在正四面体ABCD中,M,N分别是BC,AD中点.
(1)用反证法证明:直线AM与直线CN为异面直线;
(2)求异面直线AM与CN所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,底面ABCD为矩形,SA⊥底面ABCD,M为SD的中点,且SA=AD=AB.
(1)求证:AM⊥SC;
(2)求直线SD与平面ACM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

我市某高中的一个综合实践研究小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日    期 1月10日 2月10日 3月10日 4月10日 5月10日 6月10日
昼夜温差x(°C) 10 11 13 12 8 6
就诊人数y(个) 22 25 29 26 16 12
该综合实践研究小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程
y
=bx+a.
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
参考数据:
4
i=1
xi2=112+132+122+82=498;
4
i=1
xiyi11×25+13×29+12×26+8×16=1092.

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标平面上,求圆心为A(6,
π
3
),半径为6的圆的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
4x,x<1
1,x=1
x2,x>1
,设计一个输入自变量x的值,求函数值y的算法的程序框图如图所示.
(1)请将此程序框图补充完整:①处应填:
 
;②处应填:
 
;③处应填:
 

(2)当输入的自变量x的值分别为x=1、x=-2、x=3时,求出相应的函数值y的值.(必须写出计算步骤)

查看答案和解析>>

科目:高中数学 来源: 题型:

设a是实数,函数f(x)=4x+|2x-a|(x∈R).
(1)求证:函数f(x)不是奇函数;
(2)求函数y=f(x)的值域(用a表示).

查看答案和解析>>

同步练习册答案