精英家教网 > 高中数学 > 题目详情
已知一四棱锥P-ABCD的三视图如图所示,E是侧棱PC上的动点,是否不论点E在何位置,都有BD⊥AE?证明你的结论
考点:直线与平面垂直的判定
专题:空间位置关系与距离
分析:连结AC,由正方形性质得BD⊥AC,由线面垂直得BD⊥PC,从而BD⊥平面PAC,由此能证明不论点E在何位置,都有BD⊥AE.
解答: (本小题满分10分)
解:不论点E在何位置,都有BD⊥AE…(2分)
证明如下:连结AC,∵ABCD是正方形
∴BD⊥AC,…(4分)
∵PC⊥底面ABCD 且BD?平面ABCD
∴BD⊥PC,…(6分)
又∵AC∩PC=C∴BD⊥平面PAC …(8分)
∵不论点E在何位置,都有AE?平面PAC  …(9分)
∴不论点E在何位置,都有BD⊥AE …(10分)
点评:本题考查异面直线垂直的判断与证明,是中档题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设α∈{-1,
1
3
1
2
,2,3},若函数y=xα是定义域为R的奇函数,则α的值为(  )
A、
1
3
,3
B、-1,
1
3
,3
C、-1,3
D、-1,
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面是边长为2的正方形,PD⊥底面ABCD,PD=CD,E为PB的中点.
(Ⅰ)求异面直线PA与DE所成的角;
(Ⅱ)在底边AD上是否存在一点F,使EF⊥平面PBC?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点P到点F1(0,-2),F2(0,2)的距离之和为12,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

根据市场调查,某商品在最近的40天内的价格f(t)与时间t满足关系:f(t)=
1
2
t+11,(0≤t<20,t∈N)
41-t(20≤t≤40,t∈N)
.销售量g(t)与时间t满足关系:g(t)=-
1
3
t+
43
3
(0≤t≤40),其中t∈N.试问当t取何值时这种商品的日销售额(销售量与价格之积)最高?并求出最高日销售额.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,满足f(
1
2
)=2,且对于任意实数m,n有f(m+n)=f(m)+f(n)-1,当x>-
1
2
时,f(x)>0.
(1)求f(-
1
2
)的值;
(2)求证f(x)在定义域R上是单调递增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}是首项为1000,公比为
1
10
的等比数列,数列{bn}满足bk=
1
k
((lga1+lga2+…lgak)k∈N*),
(1)求数列{bn}的前n项和的最大值;
(2)求数列{|bn|}的前n项和Sn′.
(3)若λn≤Sn′对任意n∈N*都成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在边长为5的菱形ABCD中,AC=8.现沿对角线BD把△ABD折起,折起后使∠ADC的余弦值为
9
25

(1)求证:平面ABD⊥平面CBD;
(2)若M是AB的中点,求三棱锥D-MBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三次函数f(x)=x3+bx2+cx+d(a,b,c∈R)过点(3,0),且函数f(x)在点(0,f(0))处的切线恰好是直线y=0.
(1)求函数f(x)的解析式;
(2)设函数g(x)=9x+m-1,若函数y=f(x)-g(x)在区间[-2,1]上有两个零点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案