精英家教网 > 高中数学 > 题目详情

【题目】设两实数不相等且均不为.若函数时,函数值的取值区间恰为,就称区间的一个“倒域区间”.已知函数.

1)求函数内的倒域区间”;

2)若函数在定义域内所有“倒域区间的图象作为函数的图象,是否存在实数,使得恰好有2个公共点?若存在,求出的取值范围:若不存在,请说明理由.

【答案】12)存在,

【解析】

1)根据倒域区间的定义,结合函数的单调性,解方程即可求得的值,可得函数内的倒域区间”.

2)结合倒域区间的定义,先求得函数的解析式.根据两个函数有两个交点,即可得关于的方程,分离参数得的表达式,根据打勾函数的图像及性质即可求得的取值范围.

1

由二次函数性质可知, 时单调递减

,则其值域为

所以,化简可得

因式分解可得

解得,

因为

所以

即倒域区间为

2)两实数不相等且均不为.且满足时,函数值的取值区间恰为

,所以符号相同,即同为正数或同为负数

因为定义域为

所以存在两种可能:

时,由二次函数的图像可知

所以满足,

所以.由(1)可知其倒域区间为

时,由二次函数的图像可知

所以满足,

所以,根据倒域区间的定义,同理可求得其倒域区间为

综上可知,

因为

时,

画出的图像

可知没有交点.

若两个函数恰有2个公共点,则两个函数图像在2个交点.

上有两个不同交点.

化简可得,即为打钩函数.

画出函数图像如下图所示.

则当,时取得最小值,最小值为

,,

,

因为

所以为有两个交点,的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学习小组在暑期社会实践活动中,通过对某商店一种商品销售情况的调查发现:该商品在过去的一个月内(以30天计)的日销售价格(元)与时间(天)的函数关系近似满足为正常数).该商品的日销售量(个)与时间(天)部分数据如下表所示:

(天)

10

20

25

30

(个)

110

120

125

120

已知第10天该商品的日销售收入为121.

I)求的值;

II)给出以下二种函数模型:

,②

请你根据上表中的数据,从中选择你认为最合适的一种函数来描述该商品的日销售量与时间的关系,并求出该函数的解析式;

III)求该商品的日销售收入(元)的最小值.

(函数,在区间上单调递减,在区间上单调递增.性质直接应用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)试作出的图象,并根据图象写出的单调区间;

(2)若函数有两个零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某投资公司计划投资两种金融产品,根据市场调查与预测,产品的利润与投资金额的函数关系为产品的利润与投资金额的函数关系为.(注:利润与投资金额单位:万元)

(1)该公司已有100万元资金,并全部投入两种产品中,其中万元资金投入产品,试把两种产品利润总和表示为的函数,并写出定义域;

(2)试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?

【答案】(1);(2)20,28.

【解析】

1)设投入产品万元,则投入产品万元,根据题目所给两个产品利润的函数关系式,求得两种产品利润总和的表达式.2)利用基本不等式求得利润的最大值,并利用基本不等式等号成立的条件求得资金的分配方法.

(1)其中万元资金投入产品,则剩余的(万元)资金投入产品,

利润总和为:

(2)因为

所以由基本不等式得:,

当且仅当时,即:时获得最大利润28万.

此时投入A产品20万元,B产品80万元.

【点睛】

本小题主要考查利用函数求解实际应用问题,考查利用基本不等式求最大值,属于中档题.

型】解答
束】
20

【题目】已知曲线.

(1)求曲线在处的切线方程;

(2)若曲线在点处的切线与曲线相切,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在五面体中,四边形为菱形,且的中点.

(1)求证:平面

(2)若平面平面,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为.

(1)求直线和圆的普通方程;

(2)已知直线上一点,若直线与圆交于不同两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在测试中,客观题难度的计算公式为,其中为第题的难度, 为答对该题的人数, 为参加测试的总人数.现对某校高三年级120名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:

题号

1

2

3

4

5

考前预估难度

0.9

0.8

0.7

0.6

0.4

测试后,从中随机抽取了10名学生,将他们编号后统计各题的作答情况,如下表所示(“√”表示答对,“×”表示答错):

学生编号 题号

1

2

3

4

5

1

×

2

×

3

×

4

×

×

5

6

×

×

×

7

×

×

8

×

×

×

×

9

×

×

×

10

×

(Ⅰ)根据题中数据,将抽样的10名学生每道题实测的答对人数及相应的实测难度填入下表,并估计这120名学生中第5题的实测答对人数;

题号

1

2

3

4

5

实测答对人数

实测难度

(Ⅱ)从编号为155人中随机抽取2人,求恰好有1人答对第5题的概率;

Ⅲ)定义统计量,其中为第题的实测难度, 为第题的预估难度.规定:若,则称该次测试的难度预估合理,否则为不合理.判断本次测试的难度预估是否合理.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数满足,且为偶函数,若内单调递减,则下面结论正确的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB//CDABD=30°,AB=2CD=2AD=2,DE⊥平面ABCDEF//BD,且BD2EF

Ⅰ)求证:平面ADE⊥平面BDEF

Ⅱ)若二面角CBFD的大小为60°,求CF与平面ABCD所成角的正弦值

查看答案和解析>>

同步练习册答案