精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)=x2﹣bx+3.
(1)若函数f(x)为R上的偶函数,求b的值.
(2)若函数f(x)在(﹣∞,2]上单调递减,求b的取值范围.

【答案】
(1)解:若函数f(x)为R上的偶函数,

则f(﹣x)=f(x)恒成立,

即x2+bx+3=x2﹣bx+3恒成立,

解得:b=0


(2)解:函数f(x)=x2﹣bx+3的图象是开口朝上,且以直线x= 为对称轴的抛物线,

若函数f(x)在(﹣∞,2]上单调递减,

≥2,

解得b≥4


【解析】(1)若函数f(x)为R上的偶函数,则f(﹣x)=f(x)恒成立,解得b的值.(2)若函数f(x)在(﹣∞,2]上单调递减,则 ≥2,解得b的取值范围.
【考点精析】掌握函数单调性的判断方法和二次函数的性质是解答本题的根本,需要知道单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较;当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)记函数的两个零点分别为,且.已知,若不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C: (a>0,b>0)过点A(1,0),且离心率为
(1)求双曲线C的方程;
(2)已知直线x﹣y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣5x+6=0},B={x|mx﹣1=0},且A∩B=B,求由实数m所构成的集合M,并写出M的所有子集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列幂函数在(﹣∞,0)上为减函数的是 (
A.
B.
C.y=x3
D.y=x2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四组函数中,f(x)与g(x)是同一函数的一组是(
A.f(x)=|x|,g(x)=
B.f(x)=x,g(x)=( 2
C.f(x)= ,g(x)=x+1
D.f(x)=1,g(x)=x0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】异面直线a,b成60°,直线c⊥a,则直线b与c所成的角的范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知z为复数,ω=z+ 为实数,
(1)当﹣2<ω<10,求点Z的轨迹方程;
(2)当﹣4<ω<2时,若u= (α>0)为纯虚数,求:α的值和|u|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项均为正数,Sn为其前n项和,且对任意的n∈N* , 均有an , Sn 成等差数列,则an=

查看答案和解析>>

同步练习册答案