精英家教网 > 高中数学 > 题目详情
(已知抛物线)的准线与轴交于点
(1)求抛物线的方程,并写出焦点坐标;
(2)是否存在过焦点的直线(直线与抛物线交于点),使得三角形的面积?若存在,请求出直线的方程;若不存在,请说明理由.
(1)参考解析;(2)存在,

试题分析:(1)由抛物线)的准线与轴交于点,可求得的值,即可得到抛物线方程与焦点坐标
(2)由于过焦点的直线可能垂直于x轴,依题意不可能垂直于y轴,所以假设直线.再联立抛物线方程,由韦达定理以及弦长公式即可得到AB的弦长.由点到直线的距离公式即可得到点M到直线AB的距离.再由即可求出结论.
解法一:(1)由已知得:,从而抛物线方程为
焦点坐标为.                                               4分
(2)由题意,设,并与联立, 
得到方程:,                            6分
,则.       7分
 
,∴ ,   9分
,∴               10分
解得,                                     11分
故直线的方程为:.即.       12分
解法二:(1)(同解法一)
(2)当轴时,
不符合题意.                                       5分
故设),并与联立,
得到方程:,                          6分
,则.              7分

到直线的距离为,             9分
,      10分
解得,                                        11分
故直线的方程为:.即.           12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知抛物线,在此抛物线上一点到焦点的距离是3.
(1)求此抛物线的方程;
(2)抛物线的准线与轴交于点,过点斜率为的直线与抛物线交于两点.是否存在这样的,使得抛物线上总存在点满足,若存在,求的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的焦点到准线的距离为.过点
作直线交抛物线两点(在第一象限内).
(1)若与焦点重合,且.求直线的方程;
(2)设关于轴的对称点为.直线轴于. 且.求点到直线的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图为椭圆C:的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率的面积为.若点在椭圆C上,则点称为点M的一个“椭圆”,直线与椭圆交于A,B两点,A,B两点的“椭圆”分别为P,Q.

(1)求椭圆C的标准方程;
(2)问是否存在过左焦点的直线,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系xOy中,已知圆心在第二象限、半径为2的圆C与直线y=x相切于坐标原点O,椭圆+=1与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程.
(2)试探究圆C上是否存在异于原点的点Q,使Q到椭圆的右焦点F的距离等于线段OF的长,若存在,请求出Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.
(1)求抛物线C的方程;
(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,过抛物线y2=2px (p>0)的焦点F的直线l交抛物线于点A、B,交其准线于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线方程为(  )

A.y2=9x           B.y2=6x
C.y2=3x           D.y2x

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线的焦点是双曲线的一个焦点,则正数等于(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点M(2,t)(t>0)在直线x=(a为长半轴,c为半焦距)上.
(1)求椭圆的标准方程;
(2)求以OM为直径且被直线3x-4y-5=0截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值.

查看答案和解析>>

同步练习册答案