精英家教网 > 高中数学 > 题目详情
14.在区间[0,1]上任取三个实数x,y,z,事件A={(x,y,z)|x2+y2+z2<1}
(1)构造出此随机事件A对应的几何图形;
(2)利用此图形求事件A的概率.

分析 (1)在区间[0,1]上随机取三个数x,y,z,x2+y2+z2<1表示的是以原点(0,0,0)为球心,1为半径的球内的点.而事件A={(x,y,z)|x2+y2+z2<1}中的点表示的是球在正方体内部的点,
(2)利用球的体积计算公式可得出A对应的几何图形的体积.再利用几何概型的计算公式即可得出.

解答 解:(1)在区间[0,1]上随机取三个数x,y,z,
x2+y2+z2<1表示的是以原点(0,0,0)为球心,1为半径的球内的点.
而事件A={(x,y,z)|x2+y2+z2<1}中的点表示的是球在正方体内部的点,
故随机事件A对应的几何图形是一个$\frac{1}{8}$球体,
(2)则点(x,y,z)在棱长为1的正方体内,其体积V=13=1.
因此P(A)=$\frac{\frac{1}{8}×\frac{4}{3}π}{1}$=$\frac{π}{6}$.

点评 本题考查了几何概型的概率计算公式,难度不大,是中档题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.解方程:$\sqrt{x+2}$=-x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在6件产品中,有3件一等品,2件二等品,1件三等品,产品在外观上没有区别,从这6件产品中任意抽检2件,计算:
(1)两件中至多有1件是二等品的概率;
(2)两件产品的等级不同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.解不等式:$\sqrt{3(3-x)}$>3-2x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f(x)=x2-4x+4,f1(x)=f(x),f2(x)=f(f1(x)),fn(x)=f(fn-1(x)),函数y=fn(x)的零点个数记为an,则an=2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.当a=$\frac{15}{2}$时,关于x的一元二次方程x2+4x+2a-12=0两根在区间[-3,0]中.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知关于x的方程mx2-nx+2=0的两根相等,方程x2-4mx+3n=0的一个根是另一个根的3倍(m≠0).求证:方程x2-(k+n)x+(k-m)=0一定有实数根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.环境保护越来越受各级政府部门所重视,某市有一景区由于游客的吃喝拉撒产生大量垃圾,严重影响环境卫生.该景区从2014年起每年投入到环境保护中的固定费用为10万元,每接侍一万人需另投入2.7万元.假设该景区每年接待游客x万人,每一万人的门票收人为R(x)万元.且R(x)=$\left\{\begin{array}{l}{10.8-\frac{1}{3000}{x}^{2},0<x≤100}\\{\frac{1074}{x}-\frac{98010}{3{x}^{2}},x>100}\end{array}\right.$年收益为y万元,其他费用忽略不计.
1)写出该景点年收益y(万元)关于年接待游客x(万人)的函数解析式;
2)年接待游客为多少万人时,该景区的年收益y最大.(注:年收益=门票收人-环保费用)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.正项等差数列{an}满足a1=4,且a2,a4+2,2a7-8成等比数列,{an}的前n项和为Sn
(1)求数列{an}的通项公式;
(2)令bn=$\frac{1}{{S}_{n}+2}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案