精英家教网 > 高中数学 > 题目详情
已知数列{an}满足an=
1
n(n+1)
,其前n项和为Sn,则满足不等式Sn
9
11
的最大正整数n是(  )
A、3B、4C、5D、6
考点:数列的求和
专题:等差数列与等比数列
分析:利用裂项法求数列的和,列出不等式解得即可.
解答: 解:∵an=
1
n(n+1)
=
1
n
-
1
n+1

∴sn=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
=
n
n+1

∴Sn
9
11
n
n+1
9
11
解得n<
9
2

∴满足不等式Sn
9
11
的最大正整数n是4.
故选:B.
点评:本题主要考查裂项相消法求数列的和知识及简单不等式的解法知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,a3+a5=10,a7=2,则a1=(  )
A、5B、8C、10D、14

查看答案和解析>>

科目:高中数学 来源: 题型:

若某空间几何体的三视图如图所示,则该几何体的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过点M(3,-4),且在两坐标轴上的截距互为相反数的直线的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=mx-
m-1+2e
x
-lnx,g(x)=
1
x
+lnx.
(1)当m=0时,求函数f(x)的单调区间和极值;
(2)若当x∈[1,e]时,至少存在一个x0,使得f(x0)>g(x0)成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

给定函数①y=x,②y=log 
1
2
(x+1),③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数的序号是(  )
A、①②B、②③C、③④D、①④

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形BCDE是直角梯形,CD∥BE,CD丄BC,CD=
1
2
BE=2,平面BCDE丄平面ABC;又已知△ABC为等腰直角三角形,AB=AC=4,M,F分别为BC,AE的中点.
(1)求直线CD与平面DFM所成角的正弦值;
(2)能否在线段EM上找到一点G,使得FG丄平面BCDE?若能,请指出G的位置,
并加以证明;若不能,请说明理由;
(3)求三棱锥F-DME的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且a>c.已知
BA
BC
=2,cosB=
1
3
,b=3.
(1)求a和c的值;
(2)求cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+a
x+b
(a、b为常数)
(1)若b=1,解不等式f(x-1)<0;
(2)若a=1,当x∈[-1,2]时,f(x)>
-1
(x+b)2
恒成立,求b的取值范围.

查看答案和解析>>

同步练习册答案