精英家教网 > 高中数学 > 题目详情
流程如图所示,现输入如下四个函数,则可以输出的函数是(  )
A、f(x)=x2
B、f(x)=
1
x
C、f(x)=lnx+2x-6
D、f(x)=sinx
考点:程序框图
专题:操作型,算法和程序框图
分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出满足条件①f(x)+f(-x)=0,即函数f(x)为奇函数②f(x)存在零点,即函数图象与x轴有交点.逐一分析四个答案中给出的函数的性质,不难得到正确答案.
解答: 解:由程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:
该程序的作用是输出满足条件①f(x)+f(-x)=0,即函数f(x)为奇函数
②f(x)存在零点,即函数图象与x轴有交点.
A.∵f(x)=x2,不是奇函数,故不满足条件①
B.∵f(x)=
1
x
的函数图象与x轴没有交点,故不满足条件②
C.∵f(x)=lnx+2x-6的定义域(0,+∞)不关于原点对称,故函数为非奇非偶函数,故不满足条件①
D.∵f(x)=sinx既是奇函数,而且函数图象与x也有交点,故D:f(x)=sinx符合输出的条件
故选:D
点评:本题考查的知识点是程序框图,其中根据程序框图分析出程序的功能是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在边长为1的正方形ABCD的一边上取一点E,使AE=
1
4
AD
,过AB的中点F作HF⊥EC于H.
(1)求证:FH=FA;
(2)求EH:HC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆(x-1)2+(y-2)2=5的圆心到直线x-y+a=0的距离为
2
2
,则a的值为(  )
A、-2或2
B、
1
2
C、2或0
D、-2或0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直角三角形ABC,其中∠ABC=60°,∠C=90°,AB=2,求△ABC绕斜边AB旋转一周所形成的几何体的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x),对任意x∈R都有f(x+2)=f(x),当x∈(-2,0)时,f(x)=2x,则f(2013)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,在(0,+∞)上为增函数的是(  )
A、y=(x-1)2
B、y=x2
C、y=(
1
2
x
D、y=
3
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点为A(0,3),B(1,5),C(3,-5).
(Ⅰ)求边AB所在的直线方程;     
(Ⅱ)求中线AD所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(1,1)的直线将圆形区域{(x,y)|x2+y2≤9}分成两部分,使得两部分的面积相差最大,则该直线的方程是(  )
A、x+y-2=0
B、y-1=0
C、x-y=0
D、x+3y-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:

平行四边形ABCD中,E为CD的中点.若在平行四边形ABCD内部随机取一点M,则点M取自△ABE内部的概率为(  )
A、
3
2
B、
3
4
C、
1
2
D、1

查看答案和解析>>

同步练习册答案