精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=x3-mx,x∈R,若方程f(x)=2在x∈[-4,4]恰有3个不同的实数解,则实数m的取值范围是(  )
A.$({-\frac{31}{2},3}]$B.$({3,\frac{31}{2}}]$C.$({-∞,-3})∪({\frac{31}{2},+∞})$D.$({-∞,3})∪({\frac{31}{2},+∞})$

分析 函数f(x)=x3-mx,x∈R,若方程f(x)=2在x∈[-4,4]恰有3个不同的实数解,则g(x)=x3-mx-2在x∈[-4,4]恰有3个不同的零点,进而求出函数的两个极值点,根据极大值为正,极小值为负,g(-4)不大于0,g(4)不小于0,可得实数m的取值范围.

解答 解:∵函数f(x)=x3-mx,x∈R,若方程f(x)=2在x∈[-4,4]恰有3个不同的实数解,
∴g(x)=x3-mx-2在x∈[-4,4]恰有3个不同的零点,
g′(x)=3x2-m=0时,x=$±\sqrt{\frac{m}{3}}$,
故m>0,且$\sqrt{\frac{m}{3}}<4$,即0<m<48,
且$\left\{\begin{array}{l}g(-4)≤0\\ g(-\sqrt{\frac{m}{3}})>0\\ g(\sqrt{\frac{m}{3}})<0\\ g(4)≥0\end{array}\right.$,即$\left\{\begin{array}{l}-66+4m≤0\\ \frac{2m}{9}\sqrt{3m}-2>0\\-\frac{2m}{9}\sqrt{3m}-2<0\\ 62-4m≥0\end{array}\right.$,
解得:m∈$(3,\frac{31}{2}]$,
故选:B.

点评 本题考查的知识点是根的存在性及根的个数判断,熟练掌握方程根与对应函数零点之间的关系是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.要使G•P数列10${\;}^{\frac{1}{n}}$,10${\;}^{\frac{2}{n}}$,…10${\;}^{\frac{n}{n}}$,…的前n项积超过105,那么n的最小值是9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在正方体ABCD-A′B′C′D′中,过对角线BD'的一个平面交AA′于点E,交CC′于点F.则下列结论正确的是(  )
①四边形BFD′E一定是平行四边形    
②四边形BFD′E有可能是正方形
③四边形BFD′E在底面ABCD的投影一定是正方形
④四边形BFD′E有可能垂于于平面BB′D.
A.①②③④B.①③④C.①②④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,离心率为$\frac{\sqrt{2}}{2}$,点(1,$\frac{\sqrt{2}}{2}$)在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)过F1的直线与椭圆相较于P、Q两点,设△PQF2内切圆的面积为S,求S最大时圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l:2x-y=3,若矩阵A=$(\begin{array}{l}{-1}&{a}\\{b}&{3}\end{array})$a,b∈R所对应的变换σ把直线l变换为它自身.
(Ⅰ)求矩阵A;                  
(Ⅱ)求矩阵A的逆矩阵.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在平面直角坐标系中,若$\left\{\begin{array}{l}{x≤2}\\{x+y-2≥0}\\{x-y+2≥0}\end{array}\right.$,则$\sqrt{(x+1)^{2}+{y}^{2}}$的最小值是(  )
A.$\sqrt{5}$B.$\frac{3\sqrt{2}}{2}$C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合M={x|-1<x<1},N={x|x(x-2)<0},则M∩N为(  )
A.(-1,2)B.(0,1)C.(-1,0)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}的公差为d(d≠0),等比数列{bn}的公比为q(q>0),且满足a1=b1=1,a2=b3,a6=b
5
(1)求数列{an}的通项公式;
(2)数列{bn}的前n项和为Tn,求证:$\frac{1}{{T}_{1}}$+$\frac{1}{{T}_{2}}$+…+$\frac{1}{{T}_{n}}$<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知平面α与平面β相交于直线n,且不垂直,直线m?β,且m与n相交,点A∉α,l为过点A的一条动直线,那么下列情形可能出现的是(  )
A.l∥m且l⊥αB.l⊥m且l⊥αC.l⊥m且l∥αD.l∥m且l∥α

查看答案和解析>>

同步练习册答案