精英家教网 > 高中数学 > 题目详情
5.在平面直角坐标系中,若$\left\{\begin{array}{l}{x≤2}\\{x+y-2≥0}\\{x-y+2≥0}\end{array}\right.$,则$\sqrt{(x+1)^{2}+{y}^{2}}$的最小值是(  )
A.$\sqrt{5}$B.$\frac{3\sqrt{2}}{2}$C.3D.5

分析 先画出满足条件的平面区域,根据$\sqrt{(x+1)^{2}+{y}^{2}}$的几何意义,从而求出其最小值.

解答 解:画出满足条件的平面区域,如图示:

显然,$\sqrt{(x+1)^{2}+{y}^{2}}$的最小值是(-1,0)到直线x+y-2=0的距离,
∴d=$\frac{|-1-2|}{\sqrt{2}}$=$\frac{3\sqrt{2}}{2}$,
故选:B.

点评 本题考察了简单的线性规划问题,考察数形结合思想,理解$\sqrt{(x+1)^{2}+{y}^{2}}$的几何意义是解答本题的关键,本题是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(x2-3,1),$\overrightarrow{b}$=(x,-y),(其中实数x和y不同时为零),当|x|<2时,有$\overrightarrow{a}$⊥$\overrightarrow{b}$,当|x|≥2时,$\overrightarrow{a}$∥$\overrightarrow{b}$.
(1)求函数关系式y=f(x);
(2)若对任意x∈(-∞,-2)∪[2,+∞),都有m≥f(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合M={1,2,3,4},N={2,4,5},则{x|x∈M∪N,x∉M∩N}=(  )
A.{2,4,5}B.{1,3,5}C.{2,4}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知四棱锥P-ABCD的底面为菱形,∠BCD=120°,AB=PC=2,AP=BP=$\sqrt{2}$.
(Ⅰ)求证:AB⊥PC;
(Ⅱ)在线段AD上是否存在点Q,使得直线CQ和平面BCP所成角θ的正弦值为$\frac{{2\sqrt{7}}}{7}$?若存在,请说明点Q位置;
若不存在,请说明不存在的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x3-mx,x∈R,若方程f(x)=2在x∈[-4,4]恰有3个不同的实数解,则实数m的取值范围是(  )
A.$({-\frac{31}{2},3}]$B.$({3,\frac{31}{2}}]$C.$({-∞,-3})∪({\frac{31}{2},+∞})$D.$({-∞,3})∪({\frac{31}{2},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.芜湖市区甲、乙、丙三所学校的高三文科学生共有800人,其中男、女生人数如下表:
甲校乙校丙校
男生9790x
女生153yz
从这三所学校的所有高三文科学生中随机抽取1人,抽到乙校高三文科女生的概率为0.2.
(Ⅰ)求表中x+z的值;
(Ⅱ)芜湖市五月份模考后,市教科所准备从这三所工作的所有高三文科学生中利用随机数表法抽取100人进行成绩统计分析,先将800人按001,002,…,800进行编号.如果从第8行第7列的数开始向右读,请你依次写出最先检测的3个人的编号;(下面摘取了随机数表中第7行至第9行)
8442  1753   3157   2455   0688   7704   7447   6721   7633   5026   8392
6301  5316   5916   9275   3816   5821   7071   7512   8673   5807   4439
1326  3321   1342   7864   1607   8252   0744   3815   0324   4299   7931
(Ⅲ)已知x≥145,z≥145,求丙校高三文科生中的男生比女生人数多的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知M是抛物线C:y2=-4x上的一点,F为抛物线C的焦点,以MF为直径的圆与y轴相切于点(0,$\sqrt{3}$),则嗲M的横坐标为(  )
A.-2B.-3C.-4D.-2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若△ABC所在平面内一点P使得$6\overrightarrow{PA}+3\overrightarrow{PB}+2\overrightarrow{PC}=\vec 0$,则△PAB,△PBC,△PAC的面积的比为(  )
A.6:3:2B.3:2:6C.2:6:3D.6:2:3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设△ABC的三内角、B、C对边分别是a、b、c,若bcosC+$\sqrt{3}$bsinC=a+c.
(Ⅰ)求角B的大小;
(Ⅱ)若b=2,求△ABC的面积的最大值.

查看答案和解析>>

同步练习册答案