精英家教网 > 高中数学 > 题目详情
15.设△ABC的三内角、B、C对边分别是a、b、c,若bcosC+$\sqrt{3}$bsinC=a+c.
(Ⅰ)求角B的大小;
(Ⅱ)若b=2,求△ABC的面积的最大值.

分析 (Ⅰ)利用正弦定理把等式中的边转化为角的正弦,利用两角和公式整理求得sin(B-$\frac{π}{6}$)的值,进而求得B.
(Ⅱ)利用余弦定理可求得bc的最大值,进而利用三角形面积公式确定最大值.

解答 解:(Ⅰ)∵bcosC+$\sqrt{3}$bsinC=a+c,
∴sinBcosC+$\sqrt{3}$sinBsinC=sinA+sinC,
∴sinBcosC+$\sqrt{3}$sinBsinC=sinBcosC+cosBsinC+sinC,整理得$\sqrt{3}$sinB-cosB=1,
即sin(B-$\frac{π}{6}$)=$\frac{1}{2}$,
∵0<B<π,
∴-$\frac{π}{6}$<B<$\frac{5π}{6}$,于是B-$\frac{π}{6}$=$\frac{π}{6}$,
B=$\frac{π}{3}$.
(Ⅱ)由余弦定理得22=a2+c2-2accos60°≥2ac-ac=ac,
∴ac≤4,
从而S=$\frac{1}{2}$acsinB=$\frac{\sqrt{3}}{4}$ac≤$\sqrt{3}$,当且仅当a=c时,等号成立.
∴当a=b=c时,三角形面积最大,最大值为$\sqrt{3}$.

点评 本题主要考查了正弦定理和余弦定理的运用,一般是借助这两个公式完成三角形边角问题的转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.在平面直角坐标系中,若$\left\{\begin{array}{l}{x≤2}\\{x+y-2≥0}\\{x-y+2≥0}\end{array}\right.$,则$\sqrt{(x+1)^{2}+{y}^{2}}$的最小值是(  )
A.$\sqrt{5}$B.$\frac{3\sqrt{2}}{2}$C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=mlnx-$\frac{1}{2}$x2(m∈R)满足f'(1)=1.
(1)求m的值及函数f(x)的单调区间;
(2)若函数g(x)=f(x)-($\frac{1}{2}$x2-3x+c)在[1,3]内有两个零点,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=(x-a)lnx-x+a,a∈R.
(1)若a=0,求函数f(x)的单调区间;
(2)若a<0,试判断函数f(x)在区间(e-2,e2)内的极值点的个数,并说明理由;
(3)求证:对任意的正数a,都存在实数t,满足:对任意的x∈(t,t+a),f(x)<a-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知平面α与平面β相交于直线n,且不垂直,直线m?β,且m与n相交,点A∉α,l为过点A的一条动直线,那么下列情形可能出现的是(  )
A.l∥m且l⊥αB.l⊥m且l⊥αC.l⊥m且l∥αD.l∥m且l∥α

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.己知等比数列{an}的第5项是二项式($\frac{1}{9{x}^{2}}$+x-$\frac{2}{3\sqrt{x}}$)3展开式的常数项,则a3a7=$\frac{25}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.($\sqrt{x}$+1)4($\sqrt{x}$-1)8的展开式中x2的系数是-17.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.现有四种不同颜色的染料,给如图的四个不同区域染色,每个区域只染一种颜色,相邻区域染不同的颜色,不同颜色可重复使用,则共有108种不同分染色方法(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知圆x2+y2+ax-2y+1=0过点(1,2),则该圆的半径为1,过点(1,2)的切线方程为y=2.

查看答案和解析>>

同步练习册答案