精英家教网 > 高中数学 > 题目详情
5.f(x)=|x+a|+|x-a2|,a∈(-1,3)
(1)若a=1,解不等式f(x)≥4
(2)若对?x∈R,?a∈(-1,3),使得不等式m<f(x)成立,求m的取值范围.

分析 (1)若a=1,不等式f(x)≥4为|x+1|+|x-1|≥4,分类讨论解不等式f(x)≥4
(2)对?x∈R,?a∈(-1,3),使得不等式m<f(x)成立,?a∈(-1,3),m<|a+a2|,即可得出m的取值范围.

解答 解:(1)a=1,不等式f(x)≥4为|x+1|+|x-1|≥4
x<-1,不等式化为1-x-x-1≥4,解得x≤-2,∴x≤-2;
-1≤x≤1,不等式化为1-x+x+1≥4,无解;
x>1,不等式化为x-1+x+1≥4,解得x≥2,∴x≥2,
∴不等式的解集为{x|x≤-2或x≥2};
(2)∵f(x)=|x+a|+|x-a2|≥|x+a-x+a2|=|a+a2|
对?x∈R,?a∈(-1,3),使得不等式m<f(x)成立
∴?a∈(-1,3),m<|a+a2|
令g(a)=a+a2,a∈(-1,3),则|g(a)|∈[0,12)
∴m<12.

点评 本题考查不等式的解法,考查恒成立问题,考查分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知△ABC,AB=$\sqrt{2},AC=4,∠BAC={45°}$,则△ABC外接圆的直径为2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ln(x+m)-x(m为常数),在x=0处取值极值,设g(x)=f(x)-x2
(Ⅰ)求m的值及g(x)的单调区间;
(Ⅱ)n∈N*,n≥2时,证明:ln$\frac{n+1}{2}$<1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设集合A={x|$\frac{2}{x-1}$≥1},B={y|y=log2x,0<x≤4},则A∩B=(  )
A.B.(1,2]C.(-∞,1)D.[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.数列{an}的前n项和是Sn,a1=1,2Sn=an+1(n∈N+),则an=$\left\{\begin{array}{l}{1,n=1}\\{2{•3}^{n-2},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题中真命题的个数是(  )
①函数y=sinx,其导函数是偶函数;
②“若x=y,则x2=y2”的逆否命题为真命题;
③“x≥2”是“x2-x-2≥0”成立的充要条件;
④命题p:“?x0∈R,x02-x0+1<0”,则命题p的否定为:“?x∈R,x2-x+1≥0”.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一组统计数据x1,x2,x3,x4,x5与另一组统计数据2x1+3,2x2+3,2x3+3,2x4+3,2x5+3相比较(  )
A.标准差相同B.中位数相同C.平均数相同D.以上都不相同

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线Γ:$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1({a>0,b>0})$的上焦点为F1(0,c)(c>0),下焦点为F2(0,-c)(c>0),过点F1作圆x2+y2-$\frac{2c}{3}y+\frac{a^2}{9}$=0的切线与圆相切于点D,与双曲线下支交于点M,若MF2⊥MF1,则双曲线Γ的渐进线方程为(  )
A.4x±y=0B.x±4y=0C.2x±y=0D.x±2y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图所示的程序框图,若输入三个数a=log36,b=log510,c=log714,则输出的结果为(  )
A.log36B.log510C.log714D.log26

查看答案和解析>>

同步练习册答案