| A. | [-$\frac{5}{4}$,-$\frac{1}{2}$) | B. | (-∞,-$\frac{5}{4}$]∪(-$\frac{1}{2}$,+∞) | C. | [-$\frac{5}{4}$,1) | D. | [-$\frac{1}{2}$,1) |
分析 由题意作平面区域,从而化简可得t=$\frac{-2x+y-4}{x+y+2}$=1-$\frac{3}{\frac{y}{x+2}+1}$,而$\frac{y}{x+2}$几何意义是点A(-2,0)与阴影内的点的连线的斜率,从而结合图象解得.
解答 解:由题意作平面区域如下,
,
∵(t+2)x+(t-1)y+2t+4=0,
∴t(x+y+2)+2x-y+4=0,
∴t=$\frac{-2x+y-4}{x+y+2}$=1-$\frac{3}{\frac{y}{x+2}+1}$,
$\frac{y}{x+2}$几何意义是点A(-2,0)与阴影内的点的连线的斜率,
而kAB=$\frac{1-0}{1+2}$=$\frac{1}{3}$,kAC=$\frac{3-0}{1+2}$=1,
故$\frac{1}{3}$≤$\frac{y}{x+2}$<1,
故$\frac{3}{2}$<$\frac{3}{\frac{y}{x+2}+1}$≤$\frac{9}{4}$,
故-$\frac{5}{4}$≤1-$\frac{3}{\frac{y}{x+2}+1}$<-$\frac{1}{2}$,
故选:A.
点评 本题考查了数形结合的思想应用,同时考查了转化的思想应用,关键在于化简得到t=1-$\frac{3}{\frac{y}{x+2}+1}$.
科目:高中数学 来源: 题型:选择题
| A. | 13 | B. | 14 | C. | 15 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈R,x2+2x+5=0 | B. | ?x∈R,x2+2x+5≠0 | C. | ?x∉R,x2+2x+5=0 | D. | ?x∉R,x2+2x+5≠0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com