分析 (1)化简所求表达式为正切函数的形式,代入求解即可.
(2)利用同角三角函数基本关系式以及两角差的正弦函数化简求解即可.
解答 解:0<α<$\frac{π}{2}$,tanα=$\frac{4}{3}$
(1)$\frac{si{n}^{2}α+sin2α}{co{s}^{2}α+cos2α}$=$\frac{ta{n}^{2}α+2tanα}{2-ta{n}^{2}α}$=$\frac{\frac{16}{9}+2×\frac{4}{3}}{2-\frac{16}{9}}$=20;
(2)0<α<$\frac{π}{2}$,tanα=$\frac{4}{3}$,可得sinα=$\frac{4}{5}$,cosα=$\frac{3}{5}$,
sin($\frac{2π}{3}$-α)=$\frac{\sqrt{3}}{2}$cos$α+\frac{1}{2}$sinα=$\frac{\sqrt{3}}{2}×\frac{3}{5}+\frac{1}{2}×\frac{4}{5}$=$\frac{4+3\sqrt{3}}{10}$.
点评 本题考查三角函数的化简求值,两角和与差的三角函数,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ②④ | B. | ①④ | C. | ②③ | D. | ①③ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{5}{4}$,-$\frac{1}{2}$) | B. | (-∞,-$\frac{5}{4}$]∪(-$\frac{1}{2}$,+∞) | C. | [-$\frac{5}{4}$,1) | D. | [-$\frac{1}{2}$,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 50 | B. | 45 | C. | 40 | D. | 20 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{9}$ | B. | -$\frac{2}{9}$ | C. | $\frac{7}{9}$ | D. | -$\frac{7}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com